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1. INTRODUCTION

Use of best science, by today’s standards, for managing salmon harvest, should
mean employing a harvest control rule whose performance has been demonstrated
to be at least as good as other practical alternative control rules in the context
of a management strategy evaluation. Management strategy evaluation simulates
performance of the candidate control rule in an operating model of the system
consisting of the fishery, the fish stock, and its environment. Ideally, the operating
model will be parametrized using all available data, weighted appropriately for
the data quality, and analyzed by up-to-date statistical methods which quantify
all relevant uncertainties as well as providing parameter estimates. This program
of analysis is well recognized, in principle, within fisheries science, and was clearly
defined and recommended by Hilborn and Walters (1992). A recent sophisticated
and comprehensive theoretical treatment is given by Schnute et al. (2000).
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The standards for actually carrying out a management strategy evaluation
are somewhat open-ended, depending as they do on state-of-the-art statistical
techniques, exhaustive representation of relevant uncertainties, evolving under-
standing of the natural variability in ecological systems, uneven data availability,
and an expanding appreciation for what kinds of data may in fact prove to be
pertinent. Management strategy evaluations may range in their specificity from
fairly generic explorations of the relative merits of some classes of control rule, to
very concrete models of particular fisheries. Some published examples of manage-
ment strategy evaluations include Eggers (1993), Punt (1995), Walters and Parma
(1996), Butterworth and Punt (1999), and Hilborn et al (2002).
Three very important themes that should bear on updating management strat-

egy evaluations for salmon management are the recent developments in charac-
terizing ocean-climate variation, recent developments in predicting variation in
salmon production as a function of environmental variables, and recent develop-
ments in Bayesian methods for statistical uncertainty analysis.

1.1. Ocean-climate Variation

It is now apparent that the north Pacific ocean-climate system varies in a spatially
coherent way, with temporal persistence on time scales ranging from years to
decades (Gershunov and Barnett, 1998; Minobe 2000; Newman et al. 2003). This
manifests itself in patterns of sea surface temperature defining the Pacific Decadal
Oscillation Index (Zhang et al. 1997; Mantua et al. 1997) and another possible
mode of variation (Bond et al. 2003), atmospheric pressure defining the Aleutian
Low Pressure Index (Beamish et al. 1997; Overland et al 1999) and the North
Pacific Index (Trenberth and Hurrell 1994). These indices are correlated among
themselves and with other meteorological variables (Trenberth 1990; Hurrell 1995;
Gedalof and Smith 2001).
Shifts in these indices are correlated with ecological changes at various trophic

levels (Mantua et al. 1997; McGowan et al. 1998; Sugimoto and Takokoro, 1998;
Benson and Trites 2002; Hunt et al. 2002; Clark and Hare 2002), including,
specifically, shifts in salmon productivity (Hare and Francis 1994; Beamish et
al. 1999: Hare et al. 1999; Beamish et al. 2004b). Other measures of ocean
productivity vary on similar time scales, but not necessarily in synchrony (Francis
and Hare 1994; Polovina, 1995; Gregg, 2002), as do shifts in marine community
composition (Chavez et al. 2003).
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1.2. Environmental Variables and Salmon Production

It is also emerging that meteorological and/or oceanographic variables have con-
siderable power to account for annual variation in salmon survival (Scarnechia
1981; Scheurell and Williams 2004; Lawson et al. 2004; Shotwell et al. 2004;
Peterman and Haeseker 2004) though it appears that these sorts of correlations
may not be stable over long durations (Myers 1998). The measures of oceano-
graphic/meteorologic state and estimates of salmon survival rates both show spa-
tial coherence (Meuter et al. 2002).
Notwithstanding the spatial coherence and temporal persistence of these phe-

nomena, it appears that there is an important degree of independent stock-
specificity which suggests that maintaining local diversity (and perhaps within-
stock life history diversity as well) may be important to risk-spreading for the
species and for the stability of harvests aggregated over stocks (Hilborn et al.
2003; Mantua and Francis 2003).
There is considerable evidence that most of the interannual variation in smolt-

to-adult survival is owing to variation in the survival of juveniles during freshwater
overwintering or during the first year at sea (Bradford et al. 1997; Beamish
et al 2004a; and the Pacific Salmon Commission Chinook Technical Committee
studies showing effectiveness of the coded-wire-tag-derived ocean survival index
of indicator hatchery stocks for improving the fit to the stock-recruit models for
related wild stocks).

1.3. Uncertainties in the Stock-Recruitment Relationship

Three sources of variation or error contribute to the total uncertainty in the
predictions from a model. These are (1) systematic model error, (2) parameter
uncertainty, and (3) process variation.
Systematic model error arises from use of the “wrong” model. The wrong

model may portray a basic relationship incorrectly, or it may omit an influential
variable that varies non-randomly. With sufficient data, systematic model error
within the range covered by the data will be apparent from a pattern in the lack
of fit. Systematic model error confined to a domain outside the range of the data
will not be detectable from the fit to the data, but it may have considerable effect
in simulations that explore behavior outside the range of the data.
Parameter uncertainty should be revealed directly by any adequate statistical

procedure for estimating the parameters from observations. Bayesian methods
are especially apt for this purpose, as they can deliver explicit distributions of
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parameter uncertainty, and can deliver joint distributions for multiple parameters,
which will be important to the correct calculation of the consequent uncertainty
for quantities that depend on more than one of the primary parameters (Punt
and Hilborn, 1997). Any predictive modeling based on the parameter estimates
should propagate the parameter uncertainty. The fundamental sampling unit for
parameter uncertainty in such modeling is the individual realization (e.g., the
individual trajectory).
Process variation arises from the effects of unaccounted for factors that vary

more or less randomly. Both process variation and random measurement error
contribute to the residuals in the fit to the data. If the variance of the measurement
error is known, the variance of the process variation may be calculated from the
distribution of the observed residuals. Predictive modeling must also propagate
the process variation, but it propagates differently from the parameter uncertainty
in that the fundamental sampling unit is the process dynamical step (e.g., the time
step).

1.4. Objectives of this Report

Many western Alaska chum stocks have experienced low productivity and much
reduced runs in recent years, causing hardship for subsistence users. These stocks
are managed under a State policy requiring that the objective be maximum sus-
tained yield (MSY). This is implemented by attempts to manage for a fixed es-
capement goal. When sufficient data are available for estimation of a stock-recruit
relationship, the management escapement goal is a Biological Escapement Goal
(BEG), generally selected from a range calculated as 0.8 to 1.6 times the MSY
spawning escapement calculated from point estimates of the respective parame-
ters of the Ricker stock-recruitment relationship fit to the data. The rationale
for this policy is that a management strategy analysis of this control rule showed
reasonably good performance over a range of conditions when the operating model
was in fact a Ricker stock-recruit relationship (Eggers, 1993).
The objective of the present report is to analyze the stock-recruit data for the

three western Alaska chum stocks which have sufficient data to support detailed
statistical estimation of the underlying parameters. These stocks are Andreafsky
River summer chum, Anvik River summer chum, and Kwiniuk River chum. Each
of the three stocks with long data records illustrate the region-wide productivity
decline in one form or another. A subtheme of this analysis will be inquiry into
the nature of the recent decline of productivity.
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Systematic model error, parameter uncertainty, and process variation all play
considerable roles in modeling stock-recruit relationships from actual data. This
report will proceed by quantifying the pertinent uncertainties in the use of stock-
recruit data for purposes of conducting a management strategy analysis and set-
ting escapement goals for such stocks. Three aspects of the stock-recruit analysis
will receive particular attention. These are (1) the uncertainty about the estimate
of the escapement level that is associated with MSY, (2) the uncertainty about
the recruitment rate at spawning escapements well above the unharvested equi-
librium, (3) and indications of pattern in the departure of productivity from the
expected level.

2. TIME SERIES PROPERTIESOF LONGTERMREGIME
VARIATION

In the past few years, it has been hypothesized that the ocean/climate states
reflected in the monitored indices represent a small number (possibly just two)
of fairly discrete states, with characteristic probabilities of fairly abrupt transi-
tions from one to the other, leading to characteristic persistence times of states
encompassing a large number of related variables, possibly with some more or
less cyclic properties (Ebesmeyer, et al., 1991; Hare and Mantua, 2000). The
time span of the data sets with direct systematic and synoptic measurement of
the oceanographic variables comprising the ocean/climate indices corresponds to
a small number of apparent state shifts, so the data times series are too short for
statistical discrimination between models of discrete multivariate states and mod-
els of continuous serially correlated variation in many variables, with the variation
in many of the variables being mutually independent (Rudnick and Davis, 2003).
Tree ring data during the period of time with concurrent oceanographic mea-

surements show a correlation with the ocean/climate indices, allowing statistical
estimation of ocean/climate indices over the much longer period covered by tree
ring data prior to the period of oceanographic measurements (Stahle et al. 1998;
Biondi et al. 2001; D’Arrigo et al. 2001). At a much lower level of temporal res-
olution, there is some indication of the past relative sizes of salmon populations
from evidence of their effect in transporting marine derived nutrients (Finney et
al. 2000; Drake et al. 2002).
Here, we analyze some time series properties of a 331 year history of recon-

structed annual Pacific Decadal Oscillation (PDO) estimates calculated from tree
ring data by Biondi, Gershunov and Cayan (2001), available from
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www.ncdc.noaa.gov/paleo/pubs/biondi2001/biondi2001.html.
The PDO estimates are graphed in Figure (1). A first order autoregressive

model was fit to these data with a Bayesian analysis using uninformatively broad
uniform priors for the three model parameters, the lag-1 serial correlation, the
process mean, and the process standard deviation. The data are sufficient to
determine these parameters quite well. Figure (2) shows the marginal posterior
distribution for the lag-1 serial, correlation. Figure (3) shows the marginal pos-
terior distribution for the process mean. Figure (4) shows the marginal posterior
distribution for the process standard deviation.
A stochastic simulation using a first order autoregressive model, with para-

meter values corresponding to the posterior marginal means from the estimation,
gives rise to time series realizations that look reasonably similar to the original
estimates in their distribution of variation, and short to medium term pattern,
but the simulations appear to under-represent the frequency of occasional long-
duration excursions). One such realization is shown in Figure (5). This model,
therefore, is a reasonable choice for simulating time series of random environmen-
tal variation in the operating model for a management strategy evaluation. For
the same reason, this autocorrelation should be looked for in time series of recruits
per spawner data or time series of residuals from stock-recruit regressions.

3. STOCK-RECRUIT MODELS

3.1. Elementary Density Dependence Mechanisms

Assume a habitat that provides a constant resource supply flux F . Assume a
species where each individual exerts a constant per capita resource demand m
just for biological maintenance. Finally, assume that per capita instantaneous
population growth rate is proportional to the surplus of resource supply over
aggregate demand. Thus

1

N

dN

dt
= c(F −mN)

= (cF )− (cm)N
= a− bN , (1)

where N is the current population size, and the proportionality constant c is a
biological property of the species, and a and b simply collect terms for a more
compact phenomenological notation.
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The per capita demand term m is a biological property of the species. The
resource supply term F is a property of the environment. So the phenomenological
parameter b is a biological “constant” of the species, whereas a, since it is a product
involving F , depends on the environment as well as on the species constant.
Integrating this differential equation gives

Nt =
N0e

at

1 +N0(eat − 1)( ba)
=

αN0

1 + βN0
, (2)

for

α = eat

= ecFt , (3)

and

β = (eat − 1)( b
a
)

= (ecFt − 1)(m
F
) .

We note that this has the same form as the discrete time Beverton-Holt stock-
recruit model, taking t to be the duration of a generation.
Recall that c and m are species specific biological constants, whereas F de-

pends on the rate of supply of resources from the environment. Therefore, the
magnitude of the α parameter will vary exponentially with environmental varia-
tion in the resource supply. A first order Taylor approximation of (ecFt − 1) as a
function of c for small values of c yields cFt, so

β ' ctm , (5)

and, therefore, the variation in β with environmental variation in the resource
supply will be comparatively slight.
If a factor extraneous to the resource supply causes density independent vari-

ation in mortality, this will appear as a multiplicative variation in Nt+1 for the
same Nt, so it too will appear effectively as variation in α, not β.
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3.2. Beverton-Holt Stock-Recruit Model

The Beverton-Holt model (Beverton and Holt, 1957) is of the form

R =
αS

1 + βS
, (6)

where S is the number of spawners giving rise to a particular brood, R is the
number of resulting recruits corrected for harvest removals, α is the productivity
parameter, and β is the density dependence parameter.
The Beverton-Holt model has the form of a standard mathematical satura-

tion function (as appears, for example, in Michaelis-Menton chemical kinetics).
That is, with this model, the recruitment rises monotonically with spawning es-
capement, asymptotically approaching a ceiling given by the ratio α/β. In other
words, with the Beverton-Holt model, the penalty for greatly exceeding optimal
escapement is a reduced efficiency in the marginal returns of recruits per spawner,
but it does not cause an actual net depression in the number of recruits.
The Beverton-Holt model is frequently used in theoretical analyses. It is not

the most popular model for fitting to actual data. In part this is probably a matter
of convenience rather than poor fit, since doing the fitting properly requires more
sophisticated statistical methods than does the popular alternative.
The Beverton-Holt model can be transformed to a linear relationship asµ

S

R

¶
= S

µ
β

α

¶
+

µ
1

α

¶
, (7)

so a traditional linear regression will reveal an estimate of α from the reciprocal
of the y-intercept and then an estimate of β can be back-calculated from the slope
which is the ratio of β to α. The serious shortcoming of this approach is that
the assumption of normal error in the transformed space does not correspond to
any reasonable error model for the process, so with real data the estimates will
be biased and the calculated confidence limits will not be meaningful.
Proper fitting requires a non-linear regression, and generally it is assumed

that the error, in the original space is multiplicative log-normal. Such an error
structure could arise under the elementary model from normal variation in F or
from log-normal variation in the density independent mortality.
Another feature of the statistical performance of the Beverton-Holt model

that some practitioners might fight repellent is the propensity to give unstable
and biologically unreasonable estimates of the α parameter with weak data sets.
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We will not necessarily take this to be a fault—it may be a correct representation
of the weakness of the data set.

3.3. Ricker Stock-Recruit Model

The Ricker model (Ricker, 1954) is of the form

R = αSe−βS , (8)

where all the terms play the same role as in the Beverton-Holt, but the function has
a fundamentally different shape at escapement levels where density dependence
has strong influence. In contrast to the Beverton-Holt model, the Ricker model
has a potential for literal “over-escapement.”
With the Ricker curve, as the spawning escapement increases beyond a par-

ticular level, 1/β, the number of recruits declines, asymptotically approaching
zero. The declining arm of the Ricker curve results from the model incorporat-
ing a more intensely operating density-dependence mechanism than that of the
Beverton-Holt model, such that the intra-specific competition takes a heavier toll
on population growth, as might occur when over population causes damage to the
resource supply, or when the scramble for scarce resource forces all individuals into
starvation rather than sorting individuals into winners and losers. The steepest
slope on the ascending arm of the Ricker curve occurs at the origin, where the
slope is simply α. The steepest portion of the descending arm occurs at escape-
ment equal 2/β, where the slope is −αe−2. Thus, the slope of the descending arm
of the Ricker curve is always a constant fraction of the slope of the ascending arm.
The unharvested equilibrium escapement is lnα/β.
The Ricker is the most commonly used stock-recruit model for salmon data.

It is most often fit by linear regression in the log space

R

S
= αe−βS

ln(R/S) = lnα− βS . (9)

So, then, the y-intercept of the fitted regression line serves as an estimate of the
natural log of the Ricker α, and the slope serves as an estimate of the negative
of the Ricker β. Implicitly, the linear regression assumes that the error structure
is additive normal in the log space, and therefore is multiplicative lognormal on
R (Peterman, 1981). This representation of the process variation is reasonable
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and consistent with natural mechanisms. Survival operates multiplicatively in its
effect on recruitment, and the outcomes of multiple independent random processes
interacting multiplicatively tend to log-normal distributions.
Formally, the log regression is

R = αSe−βSeε
R

S
= αe−βS+ε

ln(R/S) = lnα− βS + ε , (10)

where ε is normally distributed. Then conventionally, ε would be the normal
residual from the regression.
Letting

δ = eε , (11)

so that δ is lognormal, applied multiplicatively to represent the variation around
the underlying expectation of the stock-recruit relationship, we note that this may
be absorbed into variation in the Ricker α

R = (αδ)Se−βS . (12)

This interpretation, that climatically driven environmental variation operates
primarily through the density-independent productivity term of the model, rather
than through the density dependent term, is consistent both with the elemen-
tary theoretical derivation of density dependent population growth models and
with what we know about the mechanisms of density dependence in salmon and
the effects of environmental variation on salmon population dynamics. Observed
stock-recruit data sets, when fit with a stock-recruit curve, tend to give rise to
residuals that do appear normally distributed in the log space, though often the
residuals appear not to be independent, and instead exhibit temporal pattern.
The Ricker curve is not prone to giving superficially unreasonable point es-

timates when fit to weak data sets using simple statistical methods—this curve
“likes” to conform to real data scatters showing little overt slope. However,
this apparent “good” behavior can be misleading (Polacheck, Hilborn, and Punt,
1993). It is known that the point estimates of Ricker curves fit to truncated data
sets with higher escapements culled, to mimic a data set restricted to the record
under high harvest, are liable to give spuriously low estimates of the unharvested
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equilibrium (Sk) and MSY escapement (Smsy), as the point estimates “follow” the
depressed population downward. For this reason, an explicit representation of the
correctly quantified parameter uncertainty is crucial.

3.4. Consequences of the Difference between Models

The difference in behavior between the two stock-recruit models can have profound
implications for a management strategy evaluation. For example, in population
viability analyses (PVA) using the Ricker model, it is often observed that mod-
eled extinctions frequently follow directly after high population levels that caused
density dependent population crashes. This will not occur with a Beverton-Holt
PVA model.
For another example, the theoretical analysis by Walters and Parma (1996),

arguing that a fixed harvest rate policy (rather than fixed escapement or fixed
quota policy) is likely to confer good performance, used the Beverton-Holt model,
where the resulting low harvests during periods of low population size allow a
probability for population levels to build up in advance of periods of favorable
environmental conditions during which the harvest policy can capitalize on the
higher productivity. A Ricker model may not allow “stockpiling” population in
this way (or at least to this extent) because of the cost of over-escapement. Thus,
the stakes may be high for determining whether the Ricker or Beverton-Holt model
applies.
Figure (6) shows a management strategy evaluation of constant escapement

goal policies applied to Ricker and Beverton-Holt operating models that were fit
to the same real data. The data series consists of brood tables for the Snake River
(Columbia Basin) fall chinook (Table 4, p 38 of Langness and Reidinger, 2003).
Both stock-recruit curves give good fits to these data. The operating model

assumes that the underlying geometric mean stock-recruit relationship is given by
the curve fitted to the data, and the process variation is lognormal multiplicative
with a log-space mean of zero and a log-space variance as given by the fit to the
data, and a serial correlation as estimated from the 1-st order autoregressive fit
to the tree-ring PDO reconstruction. The evaluation reports, on the y-axis of
Figure (6), the long-term mean harvest that results from constant escapement
policies with the magnitude of the escapement goal given by the x-axis. The Smsy

for each respective stock-recruit curve, with its associated harvest (which is the
performance that would be realized from an Smsy escapement in the absence of
environmental variation, is located on the plot as a cross. We see that the MSY
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escapement for the Beverton-Holt model is more than twice that for the Ricker
model. We see from the location of the peaks of the performance curves that
the optimal escapement goal to maximize long-term mean yield for the Beverton-
Holt model is more than twice that of the Ricker model. Finally, we see that the
system is much more forgiving of miscalibration of the escapement goal for the
Beverton-Holt model, compared to the Ricker, as the former has a much broader
and flatter peak to the performance curve.

3.5. Discriminating between the Models with Real Data

Both the Ricker and Beverton-Holt models may be derived mathematically from
plausible mechanisms. Discriminating among them with available data sets may
be quite difficult. Both models give rise to similar shapes for the ascending arm
of the stock-recruit curve. If the data are from a heavily harvested stock, only the
ascending arm will be represented in the data. For example, Figure (7) shows the
Beverton-Holt and Ricker curves fit to the Snake River fall chinook data that were
the basis for the preceding management strategy evaluation. In terms simply of
statistical “fit,” there is little to choose between the two models.
Walters, LeBlond and Riddell (2004) reviewed the evidence pertaining to over-

escapement in a suite of Fraser River salmon stocks for which there are long term
data sets of high quality. These were 21 sockeye stocks and 2 pink salmon stocks,
so the life histories in question were quite different from the chum stocks which
are our concern. From inspection of the empirical stock-recruit patterns, the
authors concluded that the data showed no evidence of over-escapement, in the
sense of high spawning escapements being associated with disproportionately low
consequent recruitment. In fact, scatter plots of ln(R/S) against S for these data
sets show reasonable fits to a linear relationship, consistent with a Ricker model
subject to multiplicative process variation. But all the data sets show essentially
all of the data points lying to the left of the escapement level corresponding
to ln(R/S) = 0. In other words, these data sets from harvested stocks fail to
explore the dynamics resulting from escapements greater than the unharvested
equilibrium, so the data do not fall in the range where over-escapement could
be manifested, and they do not fall in the range where Ricker versus Beverton-
Holt dynamics can be distinguished among the process noise by simple graphical
inspection.
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3.6. Schnute-Kronlund model

In fact, stating the problem as a statistical choice between the Ricker and Beverton-
Holt models is an oversimplification. If both models are plausible, differing only
quantitatively in the intensity of the operation of density dependence, intermedi-
ates should also be plausible. The model of Schnute and Kronlund (1996) includes
both the Ricker and Beverton-Holt models as special cases, as well as a spectrum
of intermediates, essentially by decoupling the slope of the descending arm of the
curve from the slope of the ascending arm. This allows, therefore, for realistic
treatment of the uncertainty about the force of "over-escapement" in possibly
depressing runs of these stocks.
The Schnute-Kronlund model is of the form

R =
αS

(1 + γβS)1/γ
, (13)

where all the common terms play the same role as in the Ricker and the Beverton-
Holt, and the γ parameter controls the family of shapes ranging from Ricker, when
γ = 0, to Beverton-Holt, when γ = 1. At intermediate values of γ the shapes
are intermediate. Figure (8) shows illustrations of a family of Schnute-Kronlund
curves with a common α, with β adjusted to yield a common unharvested equi-
librium “K,” and γ explored at intervals of one tenth. The MSY point for each
curve is shown as a solid dot.
Thus, a statistically rigorous test for evidence for over-escapement could be

conducted on the basis of the value of γ when fitting a Schnute-Kronlund model.
Figure (9) shows the result of such an analysis for the Snake River fall chinook
example. We see from the breadth of the posterior distribution that no value of
γ in the range between 0 and 1 can really be ruled out, but there is a definite
inclination in the direction of Beverton-Holt-like in preference to Ricker-like shapes
since the probabilities are larger for γ closer to 1.
As with the Beverton-Holt and the Ricker models, environmental variation is

expected to be manifest almost exclusively in the α parameter, of the Schnute-
Kronlund model, and the presumption is that this will appear more or less as
multiplicative log-normal deviations. Given the presence of one more parameter,
γ, and given that the Schnute-Kronlund model can reduce to a Beverton-Holt, it
will fall prey to the same potential for biologically unreasonable parameter values
with weak data sets. This argues for the importance of Bayesian methods for
full representation of the uncertainty in all parameters, and also incorporating
biological constraints in the prior distributions.
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It is worth pointing out that environmentally driven variation in the density
independent productivity parameter α will still affect the realized “carrying capac-
ity” andMSY escapement. The solution for carrying capacity, Sk, the unharvested
equilibrium, is

Sk =
αγ − 1
γβ

. (14)

TheMSY escapement is found from the condition for the first derivative of harvest,
H, with respect to S, being equal 0,

(1 + γβSmsy)
1
γ

α
+

βSmsy

1 + γβSmsy
− 1 = 0 , (15)

which requires numerical solution to find the root. The associated harvest is

Hmsy =
βS2msy

1 + βSmsy
. (16)

Figure (10) shows Sk as a function of α for a family of Schnute-Kronlund
curves with a series of γ values, where for each γ the value of β was set to give
Sk = 1000 at α = 4. Figure (11) shows Smsy as a function of α for the same family
of Schnute-Kronlund curves.

4. ANALYSES OF THE AYK CHUM STOCKS

The analyses reported here used Bayesian inference, and, except where noted ex-
plicitly, the prior distributions were uninformatively broad independent uniforms.
The likelihood functions used the assumed underlying deterministic stock-recruit
model with multiplicative log-normal environmental variation, treating the stan-
dard deviation of that environmental variation as a parameter to be estimated
jointly with the parameters of the stock-recruit model. The data were accepted
at face value, and possible measurement error was ignored.

4.1. Andreafsky Summer Chum

A previous analysis of the stock-recruit data for the Andreafsky River Chum is
given in Clark (2001a). The data used in the present analysis were from the
column labelled “Tracy” in an Excel spread sheet supplied by Tracy Lingnau, in
January 2004. The values in these brood tables were considerably different from

14



those reported by Clark (2001a). The present analysis does not inquire into the
differences. The brood tables used here report spawners and total recruits for
brood years 1972 through 1995.
Figure (12) shows a scatter plot of the stock and recruitment pairs, labelled

by brood year and with points connected in chronological sequence. The data
scatter is superimposed on the Ricker curve formed from the posterior marginal
modes of estimates of the Ricker α and β. The scatter is considerable, and the
data cloud shows little shape or pattern in the original space. Nevertheless. the
Ricker model gives an unambiguous fit, as shown by the posterior marginal for
α in Figure (13), the posterior marginal for β in Figure (14), and the posterior
marginal for σε, the standard deviation of the log of the multiplicative process
variation, in Figure (15).
However, a plot of the log-space residuals from the Ricker fit, namely ε the log

of the process variation, by brood, in Figure (16) puts matters in a different light.
We see a very marked downward trend that is essentially linear. Biologically this
tells us that the Andreafsky chum stock has been experiencing a fairly continuous
downward trend in productivity over the 24 year period of record. This definitely
should motivate inquiry into why the productivity is declining, or at least into
what other variables, including the productivity of other stocks, may be correlated
with it.
Mathematically, this tells us that the distribution of the variation that we

are attributing to ε is non-stationary, and in fact highly patterned and partially
predictable as a fairly consistent time trend. Therefore, for purposes of short
term prediction, our fitting method, which incorrectly assumes that the annual
departures are independent, inflates the estimate of the process variation, σε, and
inflates the apparent uncertainty of the estimates of the underlying Ricker para-
meters, and biases the estimates of the Ricker parameters toward a compromise
mean for the data series, whereas more accurate year-specific estimates of the
stock-recruitment relation could be obtained from a model that incorporated the
observed time trend in α that was revealed by the residuals. Such modeling should
be a priority.
Continuing, for the time being, with the analysis of the Ricker fit assuming in-

dependent process variation, the Bayesian approach allows calculation of explicit
posterior distributions for quantities that depend on the estimated parameters,
based on the joint posterior distribution of those parameters. Figure (17) shows
the posterior distribution for the spawning escapement at the unfished equilib-
rium, Sk, for the underlying Ricker parameters. Figure (18) shows the posterior
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distribution for the MSY spawning escapement, Smsy, for the underlying Ricker
parameters. Figure (19) shows the posterior distribution for the MSY harvest
rate (proportion of the recruits), Fmsy, for the underlying Ricker parameters.
The “modal Ricker curve” plotted in the figures is constructed from the pos-

terior marginal modes of the two Ricker parameters. While this plotted curve
provides a clear visual reference, it fails to do justice to the inference at several
levels. First of all, the joint mode may not correspond to the respective marginal
modes. Second, the inference quantifies uncertainty that ideally should be rep-
resented in the graphical portrayal (and taken into account when the inference
is used for management decisions). The Bayesian inference procedure allows for
calculation of posterior distributions of any function of the parameters. In Fig-
ure (20), the posterior distributions of recruitment itself is shown by way of its
mode (shown as a solid square), and its 95% posterior interval (defined by the
two 2.5% tails of the posterior distribution), at three selected values for spawn-
ing escapement—the values for Smsy, Sk, and twice Sk calculated from the modal
Ricker. The spread of uncertainty, owing to parameter uncertainty, is striking.
The spread at larger escapements is very large, even with the model confined to
the Ricker form.
The preceding figure reflects only the parameter uncertainty in the Ricker

curve applying to the Andreafsky chum data. For any given brood (year), the
process variation contributes further uncertainty. With process variation oper-
ating multiplicatively on the Ricker α, we may, during the course of inference,
sample the infered process variation as well, to obtain a posterior distribution
that reflects the cumulative effects of parameter uncertainty coupled with the
process variation. Figure (21) shows such a distribution for the MSY spawning
escapement for any single brood. Comparing Figure (21) with Figure (18) shows
how the addition of the process variation increases the uncertainty over parameter
uncertainty alone.
The stock-recruit data cloud for the Andreafsky shows insufficient shape to

reasonably constrain a Beverton-Holt fit, so the results of an attempt at Bayesian
estimation will be strongly influenced by the prior, and results of use of a uniform
prior will be influenced by the choice of parametrization. To illustrate a “natural”
parametrization, with ready interpretability even for a very broad range of values,
consider defining the Beverton-Holt in terms of θ, the angle of the slope at the
origin, and Rsat, the saturation recruitment

θ = Tan−1(α) , (17)
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and

Rsat =
α

β
. (18)

Then, the Beverton-Holt relationship becomes

R =
Tan(θ)RsatS

Rsat + Tan(θ)S
. (19)

This parametrization allows for a graceful uniform prior on the angle over the
entire logical range between 0 and 90 degrees. It allows for a uniform prior on
the saturation level that provides equal probabilities at high levels up to an inter-
pretable explicit limit.
With this parametrization, a uniform prior on θ between 0 and 90, and a

uniform prior on Rsat between 0 and 2.5 million, the posterior marginals on these
two parameters are as shown as in Figures (22) and (23). Even though the ceiling
of 2.5 million recruits is more than 4 times the largest recruitment observed in
the data, and more than 6 times the apparent mode for the ceiling, this limit is
not high enough to contain the range of values consistent with the likelihood: the
high tail of the posterior distribution does not taper to zero in this range. Raising
the upper limit for the uniform prior on Rsat extends the tail on the posterior, still
without causing it to taper appreciably, and changes the shape of the posterior
marginal for θ, shifting to a lower mode that is just detectable as a slight shoulder
in Figure (22). This poorly defined inference reflects the insufficiency of the data
for determining a fit to the Beverton-Holt model.
With the Beverton-Holt fit undetermined, the Schnute-Kronlund model will

not yield a clear inference either. In order to pursue the question of quantitative
evidence for the potential for “over-escapement,” the posterior distribution for
the Ricker parameter α was used as a prior for α in a Bayesian inference on
the Schnute-Kronlund model, with uninformatively broad uniform priors on β, γ,
and σε. This constraint on α, favoring a fit to the Ricker, was sufficient for the
inference to yield an unambiguous joint posterior. The results are shown for the
posterior marginal on β in Figure (24), Smsy in Figure (25), and γ in Figure (26).
Notwithstanding the prior favoring a fit to the Ricker, and therefore a low value
for γ, the posterior marginal shown in Figure (26) indicates more evidence for
higher values of γ and therefore more tendency toward Beverton-Holt-like shapes.
The effect of parameter uncertainty, in the Schnute-Kronlund fit with the

constrained prior on α, on the uncertainty in the recruitment at selected levels of
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spawning escapement is shown in Figure (27). To facilitate comprison with the
same uncertainty quantification for the Ricker model, shown in Figure (20), the
selected escapements are the values for Smsy, Sk, and twice Sk calculated from
the modal Ricker. The spread of uncertainty, owing to parameter uncertainty,
at larger escapements is not as large as in the Ricker analysis, and the posterior
envelope is more level, as expected from the tendency to a Beverton-Holt shape.

4.2. Anvik Summer Chum

A previous analysis of the stock-recruit data for the Anvik River Chum is given in
Clark and Sandone (2001). The data used in the present analysis were supplied
by Tracy Lingnau, ADFG, as an Excel spead sheet, received in January 2004.
The values in these brood tables were similar, but not identical, to those reported
by Clark and Sandone (2001) as their “mixed stock fishery model two,” which,
however, stopped with 1993. The present analysis does not inquire into the differ-
ences in the data. The brood tables used here report spawners and total recruits
for brood years 1972 through 1997.
Figure (28) shows a scatter plot of the stock and recruitment pairs, labelled

by brood year and with points connected in chronological sequence. The data
scatter is superimposed on the Ricker curve formed from the posterior marginal
modes of estimates of the Ricker α and β. The scatter is considerable, and the
data cloud shows little shape or pattern in the original space. Nevertheless. the
Ricker model gives an unambiguous fit, as shown by the posterior marginal for
α in Figure (29), the posterior marginal for β in Figure (30), and the posterior
marginal for σε, the standard deviation of the log of the multiplicative process
variation, in Figure (31).
A plot of the log-space residuals from the Ricker fit, namely ε the log of the

process variation, by brood, in Figure (32) shows a marked increasing trend from
1972 to 1982, and a consistent downward trend from 1982 to 1997. So, for this
stock, too, the distribution of the variation that we are attributing to ε is non-
stationary and highly patterned.

4.3. Kwiniuk Chum

A previous analysis of the stock-recruit data for the Kwiniuk River Chum is given
in Clark (2001b). The data used in the present analysis were from table 9 of
that document. The brood tables used here report spawners and total recruits for
brood years 1965 through 1995.
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Figure (33) shows a scatter plot of the stock and recruitment pairs, labelled
by brood year and with points connected in chronological sequence. The data
scatter is superimposed on the Ricker curve formed from the posterior marginal
modes of estimates of the Ricker α and β. The scatter is considerable, and the
data cloud shows little shape or pattern in the original space. Nevertheless. the
Ricker model gives an unambiguous fit, as shown by the posterior marginal for
α in Figure (34), the posterior marginal for β in Figure (35), and the posterior
marginal for σε, the standard deviation of the log of the multiplicative process
variation, in Figure (36).
A plot of the log-space residuals from the Ricker fit, namely ε the log of the

process variation, by brood, in Figure (37) shows an irregular downward trend,
or perhaps a simple shift from a high set of values to a low set of values in 1980.
In an attempt to explore the implications of the latter possibility, separate Ricker
curves were fit independently to the data from 1965-1979 and 1980-1995. The
resulting Ricker curves are distinct, as shown in Figure (38). The productivity
during the earlier period was more than twice that of the more recent period, as
shown by the posterior marginals on the Ricker α in Figure (39). The Ricker β,
however, was quite similar in the two periods, as shown in Figure (40), consistent
with our theoretical expectation that the predominant effect of environmental
change should be on the α parameter.

5. SYNTHESIS

There is no evidence for over-escapement in any of the three AYK chum stocks
with long enough data series to support a stock-recruit analysis. All three stocks
show large recent declines in productivity. Figure (41) overlays the three respec-
tive time series of the log-space residuals from the Ricker fit, by brood. The
overlay reveals that all three exhibit the same, nearly linear, downward trend, in
the recent two decades, and all three conform to an early episode of increasing
trend. Figure (42) shows linear and quadratic fits to the aggregate of the three
respective time series. The linear fit achieves an R2 of 0.20, and the quadratic
fit achieves an R2 of 0.28. This is to say that about one quarter of the variation
observed on a three decade time scale can be accounted for (and predicted) as low
frequency trend.
Visual assessment of Figure (41) suggests that there is also a degree of agree-

ment in the short term excursions from that trend. To appraise this quantitatively,
residuals from the common linear and quadratic trends were computed for the re-
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spective stock specific time series. The correlations between the detrended time
series of the three stocks were computed, and submitted to principal component
decomposition.
The principal components after linear detrending are

PCA I PCA II PCA III
Eigenvalue 1.743 0.688 0.569
Eigenvector
elements
Andreafsky 0.554 0.572 0.605
Anvik -0.772 0.625 0.115
Kwiniuk -0.312 -0.531 0.788
For the linear detrending, the first principal component accounted for 58%

of the variance (after detrending, which itself accounted for 20% of the original
variance), and the associated eigenvector was essentially a simple sum of the three
stocks. This confirms that the dominant mode of variation, even at the shorter
time scales, has the three stocks responding in concert.
The principal components after quadratic detrending are

PCA I PCA II PCA III
Eigenvalue 1.634 0.754 0.611
Eigenvector
elements
Andreafsky 0.548 0.555 0.616
Anvik -0.753 0.655 0.069
Kwiniuk -0.364 -0.501 0.785
For the quadratic detrending, the first principal component accounted for 54%

of the variance (after detrending, which itself accounted for 28% of the original
variance), and the associated eigenvector was essentially a simple sum of the
three stocks. This again confirms that the dominant mode of variation, even at
the shorter time scales, has the three stocks responding in concert.
All three stocks show large uncertainty in the parameters of the stock re-

cruitment curve, resulting in large uncertainty in the Smsy. The uncertainty in
the Smsy associated with the underlying mean stock-recruit relationship spans
roughly a two-fold range. The uncertainty in the Smsy from one brood to the
next, thus taking account of process variation as well as parameter uncertainty,
is much larger.
In the absence of evidence for overescapement, there is merit to considering a
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management strategy of not decreasing the escapement goal to track the trend of
decreasing productivity of these stocks. This strategy will position the stocks to
capitalize on higher productivity events when they occur. Some high productivity
events can arise from the high frequency variation, even in the time before the
long term trend turns around.
The between-stock temporal correlation in the variation in productivity, both

on short and long time scales, lends credence to the information content of the
stock-recruit brood tables. (Random measurement error variation will not exhibit
correlation beteen stocks.) The correlation shows there is promise in a search for
specific environmental variables that are the drivers, to elucidate the causes of
the ongoing decline and episodic deviations. The fact of the correlation indicates
that the cause almost certainly includes one or more common factors operating
on a regional scale—this could be a meteorological factor affecting the freshwater
phase of the life history, an oceanographic factor affecting the saltwater phase,
or competition in saltwater, or variation in ocean harvest mortality that is not
accounted for in the run reconstructions.
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