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ExecutiveSummary

A four member independengxpet panel, assisted by a biometric analyst, was commissioned by the
ArcticYukonKuskokwim Sustainable Salmon _Initiatitee examine the performance of theAlaska
Department of Fish & Game (ADFR@Gp-reconstruction modeused for estimating the abundance of
Chinook salmon in the Kuskokwim Rigedto provide recommendations fanodelimprovements and
future analysisThe model we evaluatedeferred to asi K &igitllY 2 RSt Q § KNP dz3 K 2 dzii
used by ADFG to estimate Chinook salmon abundance in the Kuskokwim River until ApiW&Q0%&d
two approachego assess the performance of this modeitst, we examined model performance using
monitoring datacollecied between 196 and 201 7o determine the influence of differerbput data(i.e.,
mark-recapture estimates) andariousstructures of abundancestimation modeln estimates of total
run size Second, weused simulated population dataintended to approxnate the dynamics of
Kuskokwim River Chinook salmaom assessnodel performance when true valued model parameters
and structureswere known as a way teexamine modekensitivity &ccuracyand bia$ to violation of
different model assumptions

Theoriginalrun-reconstructionmodelwashighly sensitive to starting valuesed forabundancerelated
parameters the estimation methodfound multiple local minima demonstrating that it was not
converging properlyn a unique solutionThe differences betweeabundanceestimates across model
fits were oftenlarge enough to be of management concern. The model convergence probleraduasd
when overdispersion parametergiere pooled bytype ofescapement indeXi.e., for data from wegas
one group,andfrom aerial surveyss anothe), and when the harvest component of the likelihoads
removed. The influence of the harvest component on model stabilg unexpected ad should be
explored further We recommendexaminingmodel fits aml negative logikelihoodsacross a wide range
of startingparametervaluesto ensure that the true global minimum negative {likelihood is foundThe
complexity of theoriginalmodelisnot supporable withthe dataused to fitit because there are tomany
parametersrelative to sources of informatioto estimate them Further, the model assumption that
errors inweir counts and aerial surveys adéstributed according toa negative binomial distribution
should be evised to assume that they aleg-normally distributed.

Mark-recapture estimates of total iiver abundance are critical for interpreting abundanioglices
collected at the tributary scale across the river. Inclusiothefmost recent ears 2014017) mark-
recapture estimates reduckestimates otthe run size of Kuskokwim Chinook salmmoduced by the
originalmodel in the most recenthalf of the time seriesin particular,inclusion of 20142017 mark
recapturestudiesproducedlower abundance estimates for the recent time frame iohgr which Chinook
salmon abundance has been particularly I&@riodic markecapture estimates are critical forimimizing
potential bias in runsize estimatesn the future particularly when population dynamics are not
synchronous across the river basand when the stock responds to changing environmental regiages
appears to haveccurred inthe last decade

The frequencyat whichmark-recapturestudiesshould be conducted should be evaluated quantitatively
using a formal valuef-information (VOI) approach based on simulati@imilar to those used by this
panel. Such VOI analyses will determine whethied how oftenthe large expense of maiecapture
programs igjustified, in light of benefits such as the value of the additional catcheseducing the
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probability of overharvest This same VOI approashouldalsobe used to determine the value ofeiv

and aerial survey programscross a range of lels of spatial coveragdyecauseit is probable that
individual enumeration projectswill become increasinglyimportant as sampling coverage of the
watershed declines, particularly in situations where the stock components do not show synchronous
dynamics aross the river &sin, as iapparentfor Chinook salmon ithe KuskokwinRiver

Performance of theriginalrun-reconstruction model was only modestly sensitive to its assumptiwets

there are no regime shifts in oceanographic conditions affectingdokisalmon productivityand that

there aresynchronous population dynamics angpsubstock components. Analyseof simulated data
demonstrate thaterrors in estimatesifiprecisionand bias) increased when sstock dynamics were not
synchronous across the river, particularly in the presence of environmental regime shifts that cause large
changes in the productivity of the stocks. Howeveasoling overdispersion parameterf the original

model (or variances in legormal modelsyreatly reduced the impacts of regime shifts in asynchronous
sub-populations on the bias in run estimates (iwhen the modelwasmisspecified). Poolingad much

less of an effect when the stgmpulationswere synchronous.

Smulations showed that regime shiffgoducinglow frequency changes in population productivitstve

the potential to make population dynamiagppearas though they are determined by Ricker stock
recruitment dynamics (i.e., there is @vcompensation in recruitment at high spawner densities) even
though the simulated data are generateffom Beveton-Holt models which do not exhibit
overcompensationThetendencyof regime shiftao produceapparent overcompensatiowasstrongest
when productivities were markedly different from oneegime to another (> 4-fold difference in
productivity), and when the frequency of regime shifts was roughly aligned with the longevity of the fish
(~4-8 years)Whether the dynamics of Kuskokwim Chinook salrace produced by overcompensation in
the stockrecruitment relationship and/or from changing environmental regimes isahedr at present,
but should be investigated furtheGiven these uncertainties, amnagement strategies should be adopted
that arerobust to the possibility that either scenario is the true state of nature.

9mulations showed that assuming that population dynamics were determined by Ricker- (over
compensatory) dynamics when, in fact, they were generated with Bevéttmh (compensatory
dynamics in the presence of environmental regime shifts, led to nlmodogically conservative
management benchmarks than if theodel incorporatedh BevertonHolt model. Managemerdbjectives
that seek to achievenaximum sustainable yieldSY that are supported by analyseassumingRicker
dynamics would have escapement goals that weBtimeshigher thanthe escapement goalsased on
BevertonnHoltmodels Thus, becaughe underlying cause of agpent overcompensation is naurrently
known, assumingricker dynamickads to morebiologicallyprecautionarymanagementhan assuming
BevertonrHolt dynamics Such biologically precautionary managementhat derives from implicitly
assuming Ricker dynamics does comvih the cost of reduced harvesipportunity, but should also
provide protection to weaksubstocks withirthe Kuskokwimstock complexwhich ischaracterized by
asynchronous dynami@nong its component populatienFuture analyses should more fully explore the
trade-offs among a variety of perfarance metrics in an attempt to understand the consequences of
regime shifts and weak mechanistic understanding ofddweses and strengths tife anomalously strong
densitydependence in Kuskokwim Chinook salnvamen compared withother Alaska Chinookalmon
stocks
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Estimates of abundance from\#evised modeladopted byADRsin May 201§ with log-normal errors on

weir and aerial survey data, pooled variances within survey types, a reformulated harvest model, and
integration of the most recent markecapture estimates) produathistorical abundancestimatesthat

tended to be lowerthan those produced by theoriginalmodel, particularly in the recent decade. Using

the revised model estimates as input tat@ckrecruitment analysis showettiat escapemenabundance
requiredto achieve MSY (or within 10% of it) would change little from targets based amigiealmodel.
Howeverabundance estimates frotine revised un-reconstruction model sugge#tat the population is

about 20 less productive aing (the escapement that would produce loigrm maximum sustainable
yield)than inferred from outputirom the originalmodel.

There is also another importamitend to consider.Currentobservations of théncreasingrarity of the
largest and oldest fisin Kuskokwim Chinook salmdwd A &S O2y OSNYy GKI i GKS WwS:
declining through timewhich could contribute to a decline in average{sepita productivity of the stock.
Longterm changes in various aspects of escapement quality (e.g-asamge of the spawners age
composition, sex ratio) should be quantified given existing datéure work should focus on quantifying

the potential effects of theséand future)changes on the productivity of the stoclkad correspondingly

on relevant maagenent reference pointsisingsimulation and analysis. Simulation should be used to
explore the degree to which management reference points should be adjusted to account for changes in
stock productivity in response to environmental variation and erosibascapement quality, given the
uncertainties in the data and thBmited ability of the current monitoring program to detect future
changes in escapement quality and run size.

Use of the stockecruitment relationship to establish management referencénps currently assumes a
homogeneous stock of Chinook salmon distributed across the Kuskokwim river when, in fact, there is
considerable evidence that Kuskokwim Chinook salmon are a collection of smaller witiclsome
degree of independence in their dgmics. Management strategies that assume a homogeneous stock
run the risk of overexploiting smaller and less productive sottiereby eroding the resilience of the
overall stock complex to future changes in the environment. Thus, it is important to iesatme
consequences ofarious harvest regimes for sustainable production over the leign, as well as
maintaining the biocomplexity within the systemdaintaining biocomplexity in the system may require
lower harvest rates in the shoterm, and this tade-off should be explicitly examinagsingsimulation

and analysis of the existing data.

Any wrther refinements of therun-reconstruction and stockecruitment modek should be thoroughly
tested through a simulation approach such as done here, to ertbiatenodel behavior and robustness
to inevitableviolations ofassumptions ar¢ghoroughlyunderstood. Such testing of the model will also
promote a more transparent model development process.
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Introduction

The Kuskokwim River is the second largest river in Alaska, draining a remote and vast watershed that
serves as spawning and nursery habitat for five species of anadromous Pacific salmon, which support
subsistencecommercialand sportfisheries. Fisheries for salmon are focused primarily on chum and
Chinook salmon as they return as maturing adults to spawn throughout the watershed. Both species have
shown large swings in abundance over the last few decades, whiehchallenged both the stakeholders

and the managers of these resources. Management is hampered lgjfticaltiesin performing accurate

stock assessments needed to establish harvest regulations, which are reliant on data thasidyé&

collect fromthis remote and complex river where funding for sampling and assessment is distinctly
limited.

The Chinoolsalmon stock in the Kuskokwim River is one of the largest wild populations in the world,
averaging around 250,000 fish between 1976 and 201Avif&ks other populations in western Alaska
(ADFG 2013schindler et al. 2013, Ohlberger et al. 2016), Kuskokwim Chinook salmon have shown
precipitous declines in abundance and productivity over the last decade, with little scientific explanation.
Though sparsely populated, people living throughout the wateddiaeve had to cope with restrictions on
subsistence fishing opportunities, aditectedcommercial fisheries for Chinook salmon were closed in
1987, though incidental harvest still occurs during commerfigdieries directed athum and sockeye
salmon Rediced abundance of Chinook salmon has focuatéehtion on the management process, with
guestions about the reliability of abundance estimates, how uncertainty in these estiis@iesrporated

into managementlecisionmaking and whether management is digiently precautionary to protect the
longterm sustainability of thestock at both the drainagavide and tributary level

Chinook salmon in the Kuskokwim River are mandgesgtd on an escapement goal policy (Hamazaki et
al. 2012; Conitz et al. 2015) wieeharvest is restricted to achieven abundance of adult fish on the
spawning grounds that will sustain the population over the long teSustainable escapement goals are
defined asa level of escapement, indicated by an index or an escapement estinmatieist known to
provide for sustained yield over a t 10year period. These goals are used in situations where data
limitation precludes the estimation of escapement that would produce maximum sustainabléMigid)

The escapement level most likelygooduce maximum sustainable yiglfhsy) is estimated from a stoek
recruitment model that relates the number of spawners to the number of recruits produced in the next
generation. Escapement that produces maximum sustainable yield is typically fourtdratadiate to

low spawning densities whethere is littlecompetition for highquality spawning sites among adyksd

for food resources among juveniles. Fisheries are prosecuted such that the number of fish in an annual
spawning run that exceexthe esapement goal are allocatddr harvest.

Accurate annual estimates from the Kuskokwim Chinosklmon run-reconstructionmodel are also

important becauseahey help guide bothin-river management and management of Chinook bycatch in

marine fisheries in th8ering Sea. In April 2015, the North Pacific Fishery Management Council (Council)

took action to lower Chinook salmon bycatch caps in the Bering Sea pollock fisheryhetestimated

Chinook salmon abundance falls near etdw a low abundance threshaoldBy October of each year,

ADF5 must provide to the Council thé-system inde&onsisting of the combined-niver adult Chinook

salmon run sizefom the Unalakleet, Upper Yukon, and Kuskokwim rivers. This total estimate is then
compared tothe / 2dzy OAf Qa8 ARSYGATFTASR GKNBakKz2fR 2F wupnzZnn,
reduction actiondy the pollock fleetire required. Whilestimates of the abundance of Chinook salmon
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on the Unalakleet and Upper Yukeiversare derived largely from dect caunts, the Kuskokwim iRer
annual estimate relies on thmore complex rurreconstruction model teestimate abundancet the
basinwide scale

Estimates of Chinook salmon abundance in the Kuskokwim River produced by tferoustruction
model also pay a key role in determiningefore the fishingseason whethe ADFGor USFWS (under
delegation of authority from the Federal Subsistence Board) will serve as the lsadson manager of
the Chinook salmon run within federal waters on the Kuskokwim RivEne vast majority of the
subsistence harvest occurs the lower portion of the river withinthe Yukon Delta National Wildlife
Refuge. The Kuskokwim River Chinook salmon preseason forecast is currently badexr ran
reconstruction model estimatef abundance in the previous yearf this estimate indicates that there
will beinsufficient Chinook salmon to meet both escapement and sulrsist needs within the watershed
and, therefore, that harvest must be restricted, the federal subsistence prograny take action to limit
harvest to federally qualified users under section 80thefAlaska National Interest Lands Conservation
Act (ANILCRA Due to depressed runs, action was taksnthe Federal Subsistence Boamd201418 to
federallymanagethe Chirook fishery within Yukon Delta NWR.

Estimating the escapement most likely to produce maximum sustainable(§aelflis a highly technical
process that relies on reliable estimates of Chinook salmon abundance through time, the distribution of
returning fsh between harvest and escapement and, in some cases, environmental effects on the
recruitment processin principle, this involves the simple process of counting the number of fish caught
in fisheries and the number that survive to reach the spawning mteuHowever, in practice, this is an
extremely difficult endeavor, particularly in systems as large and remote as the Kuskokwim River where a
full census of the population is impaossible and indicators of abundance are samplguhtoilily across

space ad sporadically through time. Even estimating the numbefisif captured in fisheries isighly
uncertain becauséhe bulk of the catch is for subsistenparposes andthere is no centralized location
where fish are processed amdsilyenumerated

Giventhese difficulties of sampling Kuskokwim Chinoadtistical models are used to estimate the total

I 6dzy R yOS 2F FTAaAK UGKFG NBUIKSO20y2 (NG ( NegiBlyY 2 IRGK &

mathematicalledgersintended to be a parsimoniousepresentation of the harvest and enumeration
process as fish return from the ocean and migrate throughout the river to spawnreRanstruction
models integrate observations that are indicators of abundance; i.e., the number of fish caught in
fisheries, he number passing through weirs located on a subset of tributaries, and the number of
spawners on a subset of spawning reacbbserved inaerial surveys. All of these indicators are subject
to substantial uncertaings including both imprecision and bia® uncertaintiesnust be accounted for
explicitly when estimating total run size. Marecapture experiments are also used to estimate total
abundancebecause they provide an objective way to scale from tributary indicators of abundance to
estimates of &solute total abundanceHowever, markecapture studies are expensive and are only
performed periodically Nonetheless, as we show below, they are critically important to the run
reconstructions because they provide the oniliable information about the absolute river-wide
abundance of fish, thereby anchoring the indicators of relative abundance obtained via other
observations.

The runreconstruction model used by ADFG to estimate total abundance of Chinook salmon in the
Kuskokwim River integrates obsations from weirs, aerial surveys, fishery catches, and occasional mark
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recapture experiments. The primary challenge lies in relating observations among locations, methods,
and years because the data are sparse. As described below, information froesthareirs, and aerial
surveys are weighted equally in the raeconstruction model used by ADFG to estimate total annual
abundance of adult Chinook. The model also requires a number of simplifying assumptions to make the
estimation problem tractable. Hower, the performance of the rureconstruction model, its robustness

to the underlying assumptions, and sensitivity to data quality have not yet been evaluated systematically.

AnIndependent Review Panel (henceforth "the Panel") was established bArttie-YukorKuskokwim
Sustainable Salmon InitiativA YK S¥in October 20180 investigate some of the challenges described
above The Panel's main objective was to systewally test theADFG rumeconstruction and spawner
recruit models for Kuskokwim\rir Chinook salmon, assaseir limitations in light of the types of data

and their uncertainties available for informing the model, test the influence of the key assumptions, and
recommend ways to improve the modéh the future.Throughout thisrepors S dza S (i &i@inalLJK NI & S
modelQ G2 NB TS NEB y-1@®nstiuéiéh modelGHat whistaged by the department until May,
Hamy @ 2 S dzie@sedinfodeD ( & Al NIT S KeBoyishution rio8el thitizyas revised to
accommodate a number of suggests from the Panel at a collaborative workshop held in March 2018
between the Panel and the ADFG model development team. As described below, the revised model
includesa different error structure and different harvest model from theginalmodel,that appeared to
remedymost of the problems identified by the Panelits review of theoriginalmodel(see Appendix 3)

The Panel's research questions were guided by some ahiieierns about the rumeconstruction model
that wereeither reported by ADFG arereraised by stakeholders and previous explorations of the model.
Those concernaere the following.

1 The first major concern was that the model estimates of total run abundance appeared to be
sensitive to the starting parameter values, an indicatiort #itgher there was a structural flaw in
the model, its parameterization was inappropriate, the datare not informative concerning
abundance, or the method used for parameter estimation was not performing as expected.

1 Second, theoriginal model assumedhat the proportional returns of Chinook salmon to the
different tributaries throughout the Kuskokwim River are perfectly synchronous through time.
This assumption is tenuous given the expanding literature documenting the diversity in
population dynamics fosalmon at regional andvithin-watershed scales. Although there is
evidence of positive correlation in productivities among salmon populatimesjding Chinook
salmon,there also is residual variation that is not shared among populations at one oraboth
those scales (e.g., Peterman et al. 2003; Pyper et al. 2005; Dorner et al. 2088Ra0#&rs and
Schindler 2008; Schindler et al. 2010; Sharma et al. 2013; Kilduff et al. 2014). However, the
sensitivity of the rurreconstruction model to the assumptiaf perfect synchrony has not been
assessed.

1 Third, theoriginalmodel assumethat production dynamics of Chinook salmon in the Kuskokwim
are stationary through time, i.e., that changes in abundance are drivenddgtionship between
the spawning stdc and recruitment whose parameters do not vary through timdeain, the
assumption of stationarity is tenuous given the substantial empirical evidence that salmon
populations, including those of Chinook salmon, routinely demonstrate-stationarity (i.e.,
change in mean and/or variance) in their dynamics (Adkison et al. 1996; Peterman et al. 1998,
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2003; Pyper et al. 2005; Dorner et al. 2008, 20Qhlberger et al. 2016; Peterman and Dorner
2012; Kilduff et al. 2014; Malick and Cox 20IB)einfluence of such nonstationarity on
performanceof the Kuskokwim rummeconstruction modehas not been assessed systematically.

91 Fourth, theoriginalmodel reliedheavily on abundance metrics derived from aerial surveys of fish
on the spawning grounds. While these data are markedly cheaper to collect than data from weirs
and markrecapture studies, they are weéthown to be highly uncertain, are usually biased, and
their influence on the rumreconstruction modelere unexplored.

9 Fifth, the influence of markecapture data ornthe run-reconstruction model output has not been
evaluated. Markrecapture estimates of abundance are the only systeite estimate of
absolute abundance and therefore inform most other parameters in the model by providing a
scalar to relate the relative abuadce indices to absolute abundance. The value of recent-mark
recaptureestimates of abundanc€0142017)for affecting model performance has not been
assessed, particularly in light of the concerns described above.

f Finally, the stockecruitment relatioa KA LJ AYLX ASR o0& (G(GKS Y2RSft Qa
demonstrates very strong densitfependence(strong overcompensation at high spawner
densities, in factand suggests that escapement goals should be redifieedximizing yield is the
goal of managementan action that has poorly understoodtonsequences if the estimated
relationship were incorrect.

In response to this list of concerns, and from some general interests of the Panel, analyses were structured
around the questions listed below. We used two prignapproaches in our model assessment. First, we
evaluated how sensitive theriginal run-reconstruction model was in terms of its estimates of total
abundance of Chinook salmon when analyzing the existing data for the Kuskokwim River. Second, we used
a simulation approach to assess model performance wheredperating modelwas constructed to
simulatereasonable approximatiaof the population dynamics of Chinook salmionthe Kuskokwim

River but where we could specify the critical parameters and assiomg. The data resulting from these
AAYdzZ I GA2ya 6SNB (KSy W oligvdlianSeRadstriicfoR modef b SsBdsINI® (1 S R
ability to accurately infer the true underlying dynamics of simulation This approach provides an
objective wayto assesshe biases and limitationsf the originalrun-reconstruction modeacross a range

of conditions that reflect different possibilities about the true nature of the dynamics of Chinook salmon

in the Kuskokwim River
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The Panel's Main Questions

1. What modifications to theoriginal run-reconstruction model (i.e., estimation model) could
alleviate starting value senaitty? Are there structural changes to the model and its associated
estimation scheme thawvould make it more stable and insensitive to starting conditions?

2. What are the effects of the following assumptionstbe runreconstruction modes
performance?

a. Synchrony in theproductivity parameter that affects residuals in /S) from the
underlying pawnerrecruit model among stocks in different spawning tributaries
b. Temporal autocorrelation in residuals of ¥8/S) and regime shifts in population
LINE RdzOG A @A (& LI NI YSHBNE Oo6wAO|lSNIh 2N . SHSNI
c. The nonlinearity of biases in aerial survey inds of escapement
3. How does the availability of different data types affect+n@gonstruction model performance?
a. What is the influence of mastecapture data on model performance?
b. Doestheinfluenceof markrecapture datanteract with underlying recruitrant dynamics
(i.e. synchrony, temporal autocorrelation, and existence of regime shifts) to affect model
performance?

4. How does the parameterization of the ruaconstruction model affect its performance?

a. Does estimating individual vs. pooled escapement @igpersion parameters lead to
better estimation performance and stability?

b. What are the effects on model behavior and performance ofdtiginalassumption of
a negativebinomial error distribution on weir and aerial survalgundance indices
compared toan alternative assumption dbg-normally distributed errors?

c. Isthe component of the model that estimates harvest properly formulated and integrated
into the likelihood calculations?

5. What are the potential management implications of errors produced byctincerns raised above
in terms of:

a. Themodel estimate oescapement that produces MSYx{pfrom analyses of spawning
stock size and subsequent recruitm@nt
b. The lost potentiaharvest ratein the system from mispecifying the true 3,?

6. If regimeshifts in recruitment productivity produce abundance dynamics that appear to be
driven by strong densitgependent regulation (i.e., overcompensation),

a. What are the implications of such dynamics for estimating escapement that produces
MSY (&)?

b. What arethe implications forestimates of the sustainable harvest rafesm mis
specifying the true 3,?

Approach

We used two approaches to assess the performance of the ADF@caonstruction model for Chinook
salmon on the Kuskokwim River: (1) fitting thereconstruction model to the observed data sets
supplied by ADFG, but with various modifications to that model's structure, and (2) fitting AdDigES!
run-reconstruction model, as well as various modifications to it, to simulated data sets wheteu¢he
parameter values and run sizes are specified and are intended to simulate alternative plausible states of
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nature for the Kuskokwim River. A limitation of examining model performance on obsertedsdhat

the true state of the system is never knownd there is no way to assess whether the model is actually
capturing the true underlying dynamics in the syste®imulations allow for testing the model under
different scenarios while being able to compare model fits to true valdéborn and Walterd992)

Structureof the EstimationModel

Theoriginal runreconstruction modetused by ADFG for stock assessmetiedon estimates of total in
river abundance from markecapture experiments to scale thebundanceof Chinook salmon in the
KuskokwimRiver across the periodf data collection whichincludes many years without systewide
assessments of escapemeriRelationships between the escapement indices at various monitoring
projects and total escapement, as well as between harvest, effort aimb@hsalmon abundance in years
with information on total inriver abundance are used to estimate the abundance in years without direct
estimates of total abundance. The raeconstruction model incorporates information across all of these
data sources imultiple submodels that are combined into singlelikelihood to determine the most
likely parameter estimatesncluding annual estimates of total run size

Runtiming

Runtiming was assessed using information from the Bethel test fishengyided bythe ADFG. The
proportion of theChinook salmonun present in weekand yealy isassumed to be reflected by the catch
rate in the fishery, as

n E— (1.1)

where CPUE is the catgler-unit-effort of the test fishery (Bue &il. 2012).

Escapement Indices

Escapement is monitored at multiple locations and by multiple methods in the Kuskokwim River basin.
ADFGnd the US Fish and Wildlife Serio&FW3)avemaintained six weirs for varying lengths of time,
with the earliest bing started in 1976 (Kogruklikive). Weir countavere sparse before 2001, but much
more consistent across all systems and yesamse2001. However, onlyine years have data from all six
weirsavailable Weir escapement counts typically monitor leésan 20% of the estimated total run to the
Kuskokwim River (Bue et al. 2012).

Theoriginal ADFQun-reconstruction model assumdtiat each weirenumeratesa constant proportion
of the total escapemento the Kuskokwim Rivezach year(i.e., the relative ras to each tributary are
perfectly synchronous through timegnd thus that the expected weir couiiat sitew in yeary is related

to total Chinooksalmonescapemengin yeary by:
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0 — (1.2)

whereQ is the escapement index scalingttacfor weirw.

ADFG has also conducted aerial escapement surveys on 14 tributary systems since 1976. As with the weir
data, the aerial escapememtata are patchily available through time. Only one year (2004) has data
available from all 14 aerial indexsams.

Therun-reconstruction model assumdtiat, as is the case for weirsach aerial survey index represents
a constant proportion of the total escapement each year, and thus that the expected aerial survey index
‘On at sitea in yeary is related tototal Kuskokwim River Chinosklmonescapemengin yeary by:

0 —, (1.3)

whereQ is the escapement index scaling factor for aerial index location

In the original model, He likelihood of weir anderial survey indices werassumed tobe negative
binomially distributed around the expected indices estimated from the total escapement (E) and site
specific scaling factork)(according to

Q0 Mo i ! (1.4)

00 110 1#
(1.5)

where 'O is the expectedi.e, modetbased)value of weir escapement ind€® , & is the over
dispersion parameter for weir sit®, 'O is the expected value of aerial escapement indéx, andd is
the overdispersion parameter for aerial survey s&¢Bue et al. 2012).

Harvest

The harvestomponent of the estimation model relates weekjy lfarvest and effort data in the fishery
to total estimated abundance by week () by estimating a catchability coefficien) for each of three
different fishing regulatiomperiods. Totalkestimated abundance by week was calculated as:

0 on, (1.6)

where( is the estimated total ro size for yeay andpy;is the proportion of the run returning the river
in weeki of yeary .
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Thelogikelihood of catchability estimates were calculated as:

0 A SO0 B B —0aoj ,

., 1.7)
. o _.
0 ITg — T

where™O is the fishing effort in yeay and weekj, O is the fisheries harvest in yegand weeld, andn

is the total number of observations of harvest for catchability coefficipi8eparateg parameterswere
estimated for each of thethree different regulationperiods As in Liller and Hamazaki (2017), the
concentrated likelihood function was used to eliminate the need for estimation of variance for commercial
efforts.

Total InRiver Abundance

Total inriver abundancestimateswere available from two separate matiecapture projectsand these

were used to anchor the rest of the rareconstuction model so that itouldestimate total abundance

in yearsvhenonly harvest, aerial surveys or weir data are available. One-neadpture project operated

from 2008 through 2012, and another produced estimates from 2014 through 2017. The latter four years
are what we refer to in this report as "new" markcapture dataUntil May 2018 only the 20082012
estimateswvereused by ADE within the Chinook salmon reneconstruction model due to concerns about
comparability of the estimates from the early and later periods. Faeel'sstarting-parameter sensitivity
analyses were run prior to the 2017 madcapture estimates becomiraydlableand, as suchtheywere

run without those estimates.

Thenegative lodikelihood of total run abundance was calculated as:
00 sYh, _— (1.8)

where 'Y is the runsize estimate from the marskecapture study in yeay, and, s the standard
deviation of the rursize estimate from the mariecapture study in yeay.

The different likelihood components are given equal weight when the combined likelihood across all
parameterswvascalculated.

Alternative Structuresf the EstimatioriModel

The Panel examined three alternative estimatimodel structures in addition tthe ADF®riginalmodel

described above. One alternative model, hereafter referred to asdtel2 2 f SR¢ Y2 RSt X | a&.
escapement indices of the same type (weir / aerial) had shareddigpersion parameters. Instead six

a parameters (one for each weir location) andd4 parameters (one for each aerial survey location),

the pooled moel has only onér and oned parameter thatwasshared among escapement indices

of the same type.

IndependentExpertPanelReview Pagel8



¢tKS a4SO2yR FEtUSNYIFGAGS SalAYlE 0MIYNNRREL 5Y KRENBIT TS
harvest component of the likelihood (eqn. 1.7) eMieekly effort data were not included in the data set;

thus, the combined likelihood only included the total run and escapement component. We investigated

this alternative estimation model because during certain analyses, we noted a strong effect tfigmit

harvest data, as we discuss later.

The third alternative estimation model combined the pooled anehaovest models. This model will be
NEFSNNBR (2 K& NISS (& LIZ2IRER kdy 2

Operating Model Structure

Simulation experiments allow us to examitie potential biaseproduced byan estimation modelby
comparing its outputacross variougparameter setsof an operating model that is parameterized to
simulate different plausible states of natur€o run simulation experiments, we developed an operati
model to generatgl) population dynamics that resemble the general patterns of the Kuskokwim Chinook
salmon population(2) commercial fishery effort and harvest, as wel(3gyeneratepseudcobservations

of the systemthat are intended to emulataveir counts, aerial survey indiceand markrecapture
estimates of total irriver abundancdsee Appendix 4 for computer code)

Population structure and dynamics

The number ofchinook salmoreturning to the Kuskokwim system during ygaN, , is given by

0 dn nYh (21)

Wherempy.aa is the proportion of animals of agefrom populationp that return during yeay, Ryyais
the total recruitment from populatiom for brood yeary :

Y, 0 OpQ & 7 (2.2)

where Py(Ey) is the stockecruitment relationship for populatiomp, ", is the standard deviation of
recruitment anomalies for populatiop, &,y is the recruitment residual for populatigmin yeary:

“h - h p " —f—p* 0Dolna (23)

where " ? is the variancecovariance matrix for drawing multivariate normal process errors for each
population, andr is themagnitudeof autocorrelation irrecruitment anomaliesThe variancecovariance

matrix ofsub-population recruitment anomalies were generated as:

FFd

E
P
E

Q- [Mho
o Mg
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, (2.4)

T
M MR [T

a F I“FTI'

wherezis the minimum correlation among stgmpulation productivity residuals, amis the total
number of subpopulations, and values noted by ellipseCi@Rare linearly interpolated between 1 and
zdown rows and columns. Values on the diagonalORare all equal to 1.

All subpopulations' recruitment dynamics were generated fronther BevertorrHolt or Ricker stock
recruitment relationships:

| 0Q 2EAEAO (2.5)
0 O | O W R g o n A
o AGAOQIT O

To simulate the effect of regime shifts on ecosystem productivity, two levels of productivity were
generated for each population by settimyoductivity at the origin ( in Ricker relationship} & in
BevertorrHolt relationship) to 1@or periods of high pductivity, andto 5 for periods of low productivity.
Maximum abundance ofrecruits for each sukpopulation (&, for the BevertorHolt, ay/(bpe) for the
Rickej was randomly drawn from a normal distributidd{mean=25 000,standard deviationé 000) to
simuhbte populations of different size

Throughout all simulationsme assumed a constant agéructure (19% total age 4, 38% total age 5, 39%
total age 6, and 4% total age &jross broodears and populationsnformed by agestructure estimates
in the Kuskokwim River Chinook populations.

Harvest Dynamics

Harvest was assumed to occur exactly as specified in the estimation model, where total harvest was
calculated as:

O 0 Yp Q h (2.6)
. . (2.7)
0 o n
whereO s the true harvest in yearweek| of agea fish from subpopulationp, 0 is the number

of agea fish from subpopulationp present inweekj of yeary, "Y is fishery selectivity for agefish, qis
the specified catchability coefficien) is the fishery effort in weekof yeary, 0 is the number of
agea fish from subpopulationp returning to the Kuskokwim during yegrandr) is the proportion of
all fish in populatiorp in yeary returning in weelj. The operating modelssumed single fishery.

We varied annual fishing effort such that mean annual harvest rate was 0.49, and individual year harvest
rates varied between ~0.05 and ~0.8, with the distribution of values bedgatively skewed (median
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harvest rate =0.53, sd = 0.21) due to the saturating relationship between effort and harvest rate (eqn.
2.6).

Observations

In the simulations, ®f the 40 sub-populations were monitored for escapement using weirs, whie
other sb-populations were monitored using aerial surveys. We assumed that all of the salmon entering
the systems with weirs were counted, while aerial surveys couatdygla proportion of the total number

in the system.

o U Q, (2.8)

2.9
O 0 0Q, (29)

whereAis the proportion of the total run that is counted by aerial surveysis the observation error on
weir counts, and- is the observation error on aerial surveys. This generatesidogal errors in
escapement indices, which different from those assumed in the estimation model (negaltivemial).
This allows for smaller amounts of observation errors to be assebsedusethe negative binomial
distribution requires variance to be greater than the mean. As an alternatamaso, we assumed that
aerial surveys were increasingly biased low as escapement increased:

O QU BQ (2.10)

where the exponents in equatioh 10 arefrom Jones et al(1998).
Mark-recapture estimates of the total Chinook salmarriver abundance were generated with:

Yxaoo h oo, (2.11)

where,  was similar to the coefficient of variation of actual magcapture estimates in the given year
(0.15 for original markecapture series, 0.05 for recent mar&capture gries).

Harvest and fishing effort were assumed to be observed with small observation errcreo(logl error
0.00001). This was a conservative approach towards assessing the utility of the harvest component of the
model; in reality, theras probably sulstantial uncertainty in characterizing the subsistence fishery that
dominates catch in this system. To simulate the irregularity of data availability across years, observations
of escapement and total run were removed in all years for which there werataoadailable in the actual

data set.

Simulation $enarios

To examine the impacts of different assumptions on the performance of the estimation model, we
generated data sets using the operating model that were intended to simulate alternative, but plausible,
states of nature (Table 1). The primary assumptionsweaexamined were (a) théegree ofsynchrony
amongsub-populations, (b) the presenaa absencef regime shifts in productivity, and (c) the presence
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or absencef nontlinearity in aerial survey indices. Additionally, we examined the impacts of végirls
of data availabilitypy running scenarios where only the old madcapture estimates were available, and
scenarios where both the old and new estimates were available. Finally, we examinacctracyand
bias of the different estimation model sictures (i.e., base model, pooled model-marvest model, and
pooled/no-harvest model).

We characterized the different assumptionsed in our analyseas follows. In scenarios where the sub
populations showed varying degrees of independence in theiruesent dynamics (i.e., were not
perfectly synchronous with one other), the average correlation amagiduals in logR/S)of sub
populationswas 0.29, the maximum correlation between a pair of stocks was 1, and the minimurh.was
Regime shifts were inlpmented at random, witha probability of occurring in each year of (1/regime
frequency). A regime shift caused all populationsstatch from a higkproductivity phase to a low
productivity phase, or vice versa. Scenarios without aerial survey bias gsadian (2.8) to generate
aerial survey indices of escapement, while those that assumeditiaerial surveys used equation (2.9).
Finally, we assessed the performance of the estimation model uscemarios that included differing
number of years of markecapture estimates that arased to inform the other parameters of thein-
reconstructionmodel. Example suistock dynamics across different assumptions are shown in Fig. 1.

Table 1. Parameters and data sets that were varied uradi@rnative scenariosto test the effect ofviolating
assumptions on thaccuracyand bias of theriginal rurreconstructionmodel.

Parameter/ OriginalModel Alternative
Data Type Assumption Parameterization
Populationsynchrony 1 0.29

(average correlation)
Regimeshift frequency 0 ~1/20 yr

Aerial survey bias constant Increases with N

Mark-recapture estimates 20032007 20032007, 20142017

Model Diagnostics

Performance of the estimation model was quantified using several metrics. To assess the accuracy of
annual run estimates for the entire Kuskokwim system, we calculated the normalized root mean square
error (NRMSE):

« T (3.1)
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of modelestimated annual run sizé, relative to specified values from the operating model. We
normalized the root mean square error by the average-sized across all years to make model
performance comparable across different stochastic iterations of the model.

We calculated the absolute value of the relative error and lmiaan estimates as:

, o (3.2)
YO :
w
W
"D",B o
R (3.3)

wherex is the specified value of the parameter or variable (e.g., run size) of interest from the operating
model output, andbis the model estimate of the parameter from the estimation model.

We ran multiple iterations ©=500) for a subset of the model scenarios to examine the coverage
probability of model estimates. Here we examined how often the simulated run size fell \ilihin
O2yFARSYOS AyiGSNBIE FT2NJ SHOK @SIFNDa NYzy SadAYlFGS «
sub-population dynamics, with or without regime shifts, and with or without the recent mmadapture

data being available. All scenarios run ia toverage analysis had observation error incorporated, as well

as nonlinear bias in the aerial survey indices.

In addition to examining the accuracy and bias of parameter estimatessiimportant to consider the
management implications of such errorfo examine whether the estimates derived from the tun
reconstruction produced apparent oveompensatory dynamics while being produced by BeveHoit
production functions, we fit the Shepherd production function to the spawner and recruitment estimates
derived from the ruareconstruction model:

- .Y
aegy aeg—————  °] -
Y
P T (3.4)
1 Iy
X0 T[Fl,
whereRis the number of recruits produced by spawn&s y R h > i |y R Y I NB SadAiavyl i

is the recruitment residual in timél ande is a measure of temporal autocorrelation in recruitment

residuals The shape of th&hepherdspawnerNB ONHzA & OdzNBS RSLISYyR&a 2y GKS
producesovelO2 YLISy al 42 NE Rey !l YBewdoBl 2f (ir OQOuWzNINER eGSR it ¢ ™
6SI1 O02YLSyalidArzy Ay LNBRdAOGAZ2Y ReéeylYAOad 28 SEIY
regimeshift strengths and durations to examine the conditions under which populations produced by
BevertortHolt dynamics would produce apparent oveompensation.
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To examine the management implications of finding es@mpensatory dynamics when they are not the
true underlying driver, wefirst calculatedo (the harvest rate that would produce maximum
sustaindle yieldMSY and™Y (the spawning escapement that would produb&SY from a Ricker
spawnerrecruit relationship fit to brood table data generated from the estimation model output
aggregated across the entire river basin. We used a Ricker-itoghkt function because this is the
relationship used by ADFG to estimétee spawnerrecruit relationshipfor Chinook salmonn the
Kuskokwim River, and also because a Beveroh relationshipprovided a poofit to the aggregate (i.e.,
when subpopulation structure is ignored) spawnsgcruit data.

We fit the Ricker spawneaecruit relationship with autocorrelated residuals as follows:

Py g ITY rY e .
1 11y (35)
<0 mh,
where] is the recruitment residual in time-1 and+ is a measure of temporal autocorrelation in

recruitment residuals (this equation is used in Hamazaki et al. 2048)then simulated the sub
populations forward fifty years across a range of hatwates (from 0 to 0.99, held constant across all
fifty years) to determine the harvest rate (and escapement goal) that would prosh&¢We examined
the error in the estimates calculated from the Rickenctionto determine if assuming a Ricker spawner
recruit relationship causes managemeneference pointsto over or underharvest fish and how the
presence and characteristics of regime shiffect any managementeference points

Starting-Parameter Sensitivity

To examine the sensitivity of thesstimation model to starting values of total adult abundance (run size),

a concern highlighted by ADFG staff (Hamazaki and Liller 2015), we fit the model across 100 different
starting values for run size and examined the solutions produced by the estinmtidel. We considered

a range of starting values from 1@00 to 400 000 (using the same starting value for all yearsich
brackets thepreviously estimatedun sizes estimated fo€hinook salmon ithe Kuskokwim River. We
examined the sensitivity ohe model estimates to starting values using all four of the Panel's alternative
model structures (Table 1) to determine why any minimization issues may have been occurring and to
examine potential modestructure fixes to this issue. The startimglue isse was examined in the
estimation model implemented in two modeling platforms, the R Statistical Computing Environment (R
Core Team 2016) and AD Model BuildeDiB;Fournier et al. 2012), as well as using both the actual
Kuskokwim River Chinook salmon @and simulated data sets generated by the process model. For
simulated data sets, we considered a range of starting values from 0.8 to 1.2 times the mean mark
recapture estimate of the simulated data set.
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Results
Effects of Data-Availability on Rin Siz Estimates

Mark-recapture estimates from 2012017were notincluded in officiaRDFGun-reconstruction analyses

prior to May 2017due to concernsabout comparabilitywith older markrecapture estimates (e.g.,
estimates were made for different sectiod river in different years and usd different methods to
estimate downstream escapement). Stakeholders have raised concerns regarding the exclusion of recent
mark-recapture estimates from theecentrun-reconstruction analysiskor the analyses descritdén this
report, ADFG supplied standardized estimates of mradapture for both the recent projects (202017)

and older projects (2063007), whichallowedus to explore the effects of different amounts of data and
alternative structures of theun-reconstruction model on the estimates of resize in recent year8oth

sets of markrecapture estimates were standardized to theriver abundance of Chinook salmon
upstream of Birch Tree Crossingvér kilometer294), plus estimates of unmonitored escapemh to
downstream tributaies. The original downriver escapement expansions were estimated from modeled
relationships between watershed size and productivity using monitored reference tributaries to scale
unmonitored tributaries (Schaberg et al. 2012hese expansions were found to be biased high (ADFG,
unpublished datp and the new lower river expansions are on average 62% of the expansions reported in
Schaberg et a(2012), resulting in smaller total run estimates using the new expansions.

Regardlessfovhether new markrecapture data were included or excludednrsizeestimates followed
gualitatively similar trends throughout the time seri@iSig. 2). However, exclusion of the newest set of
mark-recapture estimates resulted islightly higher runsize estimates in recent years (202D17),
regardless of whether ovetispersion parameters were pooled or unique for different escapement
indices (Fig2). While there were consistent differences in po&stimates of run size, estimates from all
models fellwithin the confidence intervals of all other model estima(€sy. 2) indicating no statistically
significant difference between model runs. Restimate differences between the different model
structures and data setsere greatetrin the early years ahe data sethan in later years (Fig. .3)

Startingvalue Sensitivity in Bimation Model UsingObservedData

Theoriginal estimation model was sensitive to starting valuggun size arriving at multiple solutions,
regardless of whether nemark-recapture estimates were included (Figs3). Thsissue was particularly
problematic when fitting the model in ADMB (Fig. 5, 7, 8),ibwias still an issue when fitting in R @ ig
4,6, 8). Theaveragedifference in annual run estimates acrossaebsolutionswas18,320 when fit in R
(Fig. 4) and 75,670 when fit in ADMB (Fig. 5) without new frerépture estimateswhile themaximum
difference (red lines in Figs-4 was 49,550 in R and 220,300 in ADMB. When new meckpture
estimates were avéable, the differences among solutions across tétar values improveglightly, with
mean values of 11,470 in R (Fig. 6) and 57,940 in ADMB (Fig. 7) and maximum values of 55,650 in R and
195,500 in ADMB. However, while the range of solutions found byB\dkE much wider than in R, the
best solutions found in ADMB had lower negativellkglihood values than those found in R, indicating
better fits to the data (Fig. 8). These multiple solutions in annuaisiz® values are a concern because
they can havalifferent management implications in terms of future decisions and interpretation of the
effectiveness of past regulations. The different solutionsany of them found repeatedly by the
estimation procedurghaddifferent minimum negative logikelihood \alues, suggesting the presence of
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multiple local minima across the likelihood surface, potentially due to -paeameterization of the
estimation model (Fig. 8). Further, the different repeated model solutions were arrived at across the entire
range of stating values (Fig. 8).

To examine whether the apparent ovparameterization resulted from the unique ovdispersion
parameters for each escapement project, we examined the effect of starting values on model estimates
when using the pooled model, and whercluding or excluding the newest mar&capture estimates of

total escapement. Pooling the ovdispersion parameters into a singkarameterfor aerial surveys and
another for weirs reduced the variability among model fits for most implementationseofitbdel (Figs
9-12). The model with pooled owglispersion parameters in R without the new madcapture estimates

had a lower mean (16,290) and maximum (47,260) difference among run estimates (Fig. 9) than when
over-dispersion parameters were not pool€#ig. 4) The model fit in R with the new markcapture
estimates was slightly more variable with pooled cd&persion parameter@-ig. 11than without (Fig.

6), with a mean difference among solutions of 14,500 and maximum difference of 54,920 {Fighd 1
model fit in ADMB with pooled ovatispersion parameter¢Fig. 10)wason averageess sensitive to
starting values than with individual oveispersion parameters on average when the new nradapture
estimates were ignore@Fig. 5Ymean differerte among solutions of 57,820 and maximum difference of
223,900; Fig. 10). Additionally, the model in ADMB with pooled-diggrersion parameters was much
more stable when the new mainecapture estimates were incorporated (mean difference among
solutions ¢ 13,780 and maximum difference of 58,550; Fig. 12) than when each escapement index had a
unique overdispersion paramete(Fig. 7) Once again, while the model solutions in ADMB were more
variable than in R, the best solutions in ADMB had lower negatiMéElihood values than in R, indicating
better fits to the data (Fig. 87 key finding is thatensitivity to starting values decreased the most when
both overdispersion parameters were pooled and the new markapture data were used in the
estimation.

Because there still was evidence of multiple local minima when we assumed pooledispersion
parameters and used all the mar&capture data (Fig. 8), we examined the sensitivity of the estimation
model to inclusion of the harvest component in thalaulation of the negative lelikelihood. We
hypothesized that the catchability coefficients during the early years of the time gaiigd be causing

fitting problems, because there are mmchoringmarkrecapture estimates and few escapement indices

in that periodto provide strong support for particular run estimates. When the harvest component of the
model was removed from the calculation of the negative-liglihood (i.e., "neharvest model"), the
model was much more stable across starting vaine8DMB, though it still found two solutions (&i§,

13, 14). When the new mailecapture estimates were naisedand overdispersion parameters were

not pooled by type (Fig. 13), removing the harvest component of the likelihood reduced both the mean
(23,780) and maximum (75,090) difference among model solutions over both the base and pooled
estimation models. When new markcapture estimates wereised (Fig. 14), the ndarvest model
improved the stability over the base model, but not the pooled estiorathodel, with a mean difference
among solutions of 20,370, and a maximum difference of 81,410. Further reducing parameterization by
pooling overdispersion parameters, the pooled/Amarvest model was stable whether or not the new
mark-recapture estimateswere included (though it found different solutions between those two
scenarios; mean differences among solutions across starting values less than 0.3 and maximum
differences less than 3 for both scenarios; Fig.18, Thus,another key finding is thahe only model
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formulation that did not produce multiple solutions was one where the harvest component was excluded
and where ovedispersion parameters were pooled into weir and aerial survey projects.

Starting-value ®nsitivity in Estimation Model UsingSimulated @ita

In simulated data sets, the Awarvest model was stable (i.e., gave a unique solution in terms of annual
estimates of run sizes) across starting vaJuegardless of whether ovatispersion parameters were
pooled. This stability held acrossenarios with synchronous sylopulation dynamics (Figs. 17, 18),
asynchronous supopulation dynamics (Figs. 19, 20), and with (Figs. 17, 19) and without18, 20)
observation error. Thugjiven that asynchrony and observation errors ekisthe Kiskokwim Chinook
system much of the instability in ADFGiginal run-reconstruction model appears to derive from an
overly complex harvest component of the model that is not well parameterized.

Theoriginalestimation modetendedto fit certain escapemet indices more closely than others (Fig. 21),
indicating that itwas drawing the most information from these escapement data. The Kwethluk and
Kogrukluk weir indices were very highly correlated (correlation > 0.95 across all estimation model
structures) vith their model estimated valuesind Kogrukluk weir observations were alparticularly
correlated with the model estimated values. This pattern arose across all model structures
(pooled/individual ovedispersion, with or without new markecapture etimates). In generalhe
estimation model better fibbserved weir indices than aerial survey indices. The Bear River aerial index
[labeled as.berQin Fig. 21jwas particularly uninformative, as model estimates had low correlations
(correlation = ~0.2)vith observed escapement valuéBig. 21) Pooling ovedispersion parameters by
escapement indx type slightly reduced the correlation between observed and estimated escapement
indices. Additionally, the R and ADMB implementations of the model fit thaelaedices differently, with

the ADMB implementations fitting the Kwethluk aerial survey very well (correlationg)>while the R
model fit this index with a correlatioaf approximately 0.6. The R implementation also fit the Holokuk
aerial survey(‘8.hlk® more poorly (correlation ~ 0.2), while the ADMB implementation fit these
observations bette (correlation ~ 0.6). Interestingly, within each modeling implementation, the different
model structures and data availability scenarios had little effecthenrelative fits among streams (Fig.
21).

The original estimation model generallgstimatedhigher overdispersion parameters for weir indices
than for aerial survey indices (Fig. 22). Higher a@ligpersion parameters indicate less variation of
observedescapement indices around the model predicted mean values, another measure of the amount
of information the model derives from each index. This result is not surprising, as weir indices are much
closer to census counts (though stifily indices) than areerial surveys, which are subject to variable
flight conditions, viewing conditions, and ndinear bias across ranges of escapement (Jones et al. 1998).
As such, weimdices should provide more consistent indicators of run size than aerial surveysjndice
though the value of information derived from weirs and aerial surveys should be quantified objectively,
as discussed later in this report (see Discussion)
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Simulation Model Experiments

While individual estimates within model iterations can have higlors, ina qualitative sensethe
estimation model perforrad reasonablyvell across a range sfmulatedscenarios. The average relative
error across model iterations in annual run estimavess always less than 15%, and typically less than
10% acrosshe scenarios examined. The relative performance of the model declined as the operating
model violated more assumptions ohd estimation model, but even in scenarios violating several
assumptions, the model still performed fairly wedhd management targe set from these estimates
tendedto be biologicallyconservative and thuappear tonot presentbasinwide conservation problems
(seeManagement Implications of Estimation Errbedow).

It is important to note that thesensitivity of theestimation model to starting parametewralues, as
described aboveyas also seen iour simulation experiments. As suahe may have occasionally missed
the global likelihood minima so théte errors and biases of true best model fits may be lower than what
we presat here. However, the relative impacts of violating different assumptions about the underlying
population dynamicsor of different estimation model structureshould hold and provide information
about which model assumptions are most important to addrassuture model developmergfforts
progress.

Accuracy and Bias

During explorations of runeconstruction model fits to simulated data, we identified a pattern wherein

the model consistently overestimatddotal escapemenand thus total run size. Thisisgestemmedfrom

the pooling of harvest and effort data across the final three weeks of the data set. As the CPUE likelihood
does not assume a linear relationship between catch and effort, this pooling across iwge&sriginal
modelis statistically iappropriate. Fitting the rumeconstruction model to actual data without pooling
catch and effort across weeks resdtin lower run estimates for all years after 1990, regardless of which
parameterization or markecapture data scenario we examih@-igs.23, 24). The largest effeof the

pooling of catch and effort data over the final three weeks of each seastutred when overdispersion
parameterswere pooled, and when therevere no new markrecapture estimatesncluded in the run
reconstruction(Fig 25).

Asynchronous supopulation dynamics increased the normalizBR#SE of annual run estimates across
all scenariosiad all estimation model structures when compared with synchronous cases&ssumed

by the original ADFG estimation model; Fig.-28). Thisresult was expected,becausethe estimation
models all assue that each sulpopulation accounts for a constant proportion of the total run through
time; asynchrony violates this assumption. Additionally, asynchronouspapblation dynamics
increased the annual relative error in run estimates (from ~3% to ~4 15%; Fig. 234), as well as the
bias across the time series (Fig-&85.

The presence of reginghifts generally increased the normaliZRSE in run estimates, though the effec
was strongest when supopulation dynamics were asynchronous (Fig. 27). Anralative errorin run
estimates also increased in the presence of regime shifts (Fig.321,37, 38), particularly with
asynchronous dynamics among spdpulations. Pooling er-dispersion parametergeduced he
impacts of regime shifts in asynchronous gdpulations on the bias in run estimat@sg. 37, 38)Pooling
hadmuch less of an effect when the spbpulationswere synchronous.
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Nonlinearity in aerial survey eapemant indices as opposed to lireity in theoriginalmodel, increased

the normalizedRMSE in run estimates, and the effect was particularly strong wherpgpllation
dynamics were asynchronous (Fig. 28)nfinear biasesn aerial surveys generally inciesd the bias
across the time seriexcgmpareFig. 39,40), as well as increasdle average relative error in each
individual year ¢ompareFig. 33, 34). The bias and magnitude of annual run estimate relative error
causediy nonlinear biases in aerialsveysweregreatly diminished when new mark recapture estimates
were incorporated into the model and when oveispersion parameters were pooled by index type.

Incorporating information from recent mantecapture experiments reduced the normalized RMSB&szsc

all scenarios and model structures compared to omitting those recent fneidpture data (Fig. 288).
The benefit wasmallerwhen subpopulation dynamics were asynchronous, due to all rradapture
events being towards the end of the tinseries. Brly yearsof the time-serieswere still subject to higher
errors when sukpopulation dynamics are asynamous. Theeffect of including new markecapture
estimates on the average annual relative error (Fig32pand consistency of bias (F3§-40) was striking.
Including the new markecapture estimates greatly reduced the relative error in the last half of the time
series (from ~12A5% to ~45%). The relative error in scenarios with asynchronouspspulation
dynamics and new maiflecaptue data were less than the relative error in scenarios with perfect
synchrony in supopulation dynamic without new mastecapture. Without these new mastecapture
estimates relative error quickly increasedfter the initial set of markecapture estimats. These results
highlight the importance ofperiodic markrecapture studies for reducingrelative error in run size
estimates in the future, thougthey are not likely tamprove the estimation accuracy in the early part of
the time-series.

Removing theharvest component from th estimation model reduced the normaliz&MSE of annual
run estimates compared to theriginal estimation model (Fig. 26). However, removal of the harvest
componenttended tothe average magnitude of relative error in annual esties in the early portion of
the time series (Fig. 280), when therewere limited escapement counts. Under these situations the
harvest component likely provideduch of the information used to estimate each annual run value. This
result is unexpected ahshould be explored further.

While the model estimation errors were generally snivalFigs. 284, the confidence intervals on those
estimates did not always include the true run size value. The proportion of simulations in which model
estimates includedhe true values was influenced by the biological and management scenario examined
(Fig. 41) The presence of asynchronous udpulation dynamics generally reduced the coverage
probability of model estimates relative to scenarios with synchronous-gojuation dynamicslf the
population dynamics were characterized by asynchrony among stock components, the coverage
probabilitytended to be only about 60%.

The presence of regime shifts slightly reduced the coverage of model estimates wheomuation
dynamics vere asynchronousspecially in the early yearsut had either little or the reverse imgaon
coverage when supopulation dynamics were perfectly synchronolibe incorporation of recent mark
recapture datanodestlyincreased the coverage of meldestimates for scenarios with asynchronous-sub
population dynamics, but had no effect on coverage for scenarios with synchronoysopulation
dynamics. Coverage values were generally higheshénearliestyears with few escapement indices
available as these estimates had greater uncertainty and wider confidence intervals.
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Management Implications of Estimation Errors

The consequences of inaccuracy and piasluced bythe estimation model results depend on how those
results are used for management of KuskokviRimerChinook salmon. Because then-reconstructiors

are used to estimate spawneecruit relationships that inform the setting of escapement goals, we
examinedhow the accuracy and bias issues identified alzamaffectmanagement reference points (i.e.,
escapement goal targeksFirst, we examined whether the abundance estimates derived from the run
reconstruction model produced spawnegcruit relationships hat indicatel overcompensatory
dynamics in the system (as is suggested byettisting data on Chinook salmon in tkaskokwinRivej.

We then examined the effect of assuming oce®mpensation on management reference targets by
estimating both escapemergoals and harvest rates that would produce MSY and comparing them to
those values that producEMSY when populations were simulated forward in time across the range of
potential harvest rates.

Catalano (2012Yound that appearance of strong overcompensatiin recruitment dynamics in
Kuskokwim River Chinook salmwasanomalous when compared with thedevenother AlaskaChinook
salmonstocksincluded in his analysishere there was no compelling support for overcompensation in
population dynamics Becausegroductivity regime shifts have been suggested as a potergadon for

the apparent strong ovecompensation detected in the Kuskokwim River Chinook salmon population, we
examined the effect of regime shifts of different strengths and durations onikiediHood of detecting
overcompensation and the subsequent effects on management targets. We ran these scenarios with both
synchronous and asynchronous spdpulation dynamics, though all were produced by Beveitmit
production functions. We assumed thall markrecapture data were available for all scenarios.

The Shepherd spawneecruitment model fit to thedata from brood tables derived from the run
reconstruction model suggest that the likelihood of detecting esempensatory dynamics (i.e., a Ricke
shaped spawnerecruit relationship rather than a Bevertddolt shaped relationshipas indicated by

{ KS LI S NI Was affectedh by the presence and characteristics of regime shifts acting upon the
population. Stronger regime shiftproduced the appe@nce of stronger overcompensationn
recruitment dynamics(Fig. £). Further, the duration of regimes played a major role in whether -over
compensatory dynamics were detectesfrong overcompensation was detectatbre consistentlyvhen
regime duratiorwasroughly equal tahe longevity of Chinook salmon (4 to 8 yeaiid)e effects of regime
strength and duration were present regardless of whether-population dynamics were synchronous.
Asynchronous dynamics generally produced larger estimates of-covgpensation strength (i.e.,

{ K S LIKiS &N@&hd gopulation dynamics were produced via Bevetttoit recruitment

We found that Ricker spawneecruit relationships fit to theoutput from the runrreconstruction model
generally identifySnsy valueslargerthanthosethat would produceMSYbased on longerm simulations
regardless of whether supopulation dynamicsvere synchronous or asynchronou§ig. 44). While
estimates ofSysyare high for both synchronous and asynchronous dynamitspecifications aresmaller
onaverage when dynamics are asynchronous. Similarly, estimates of the harvest rate that would produce
MSY(as derivedrom the Ricker spawnenecruit relationship fit to estimated run sizZegnderestimated

the optimal harvestate (Fig43). Thus, he presence and characteristics of periodic productivity regime
shifts affected estimates of management targets in our simulation models. Estimation errors generally
increased with regime shift strengind were strongest when the duration of eaggime stateroughly
matched the averagngevityof individuals irthe populations being simulated.
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From a conservation perspectivisspecifying the production dynamigas driven by Ricker dynamics
rather than by Bevertoidolt dynamics)in the stockrecruitment analysisproduces management
reference points that result ibiologicallyconservative harvesiates That is, more Chinook salmon are
allowed to spawn than would produce the maximum sustainable ywekhuilitrium. Such an approach

will reducethe risk of overharvesting (or causing the extinction of) stbcks that are less abundant or
productive than other suistocks at any point in time. Such contrasts in greductivity of substocks
should be expected in the Kuskokwim, given the existatg duggesting little coherence in the dynamics

of substocks in the system, and the prevalence of such biocomplexity in stieronecosystemsEven
though theKuskokwim River aggreggpepulation has apparently supported high harvest rates while at
low abundance in the past before rebounding to high abundance, small populations are inherently at
greater conservation risks than large populations. Stochastic mortality events, Allee effects, and other
depensatory mortality processes could all result in restliproductivity at low abundanceghus, using a
Ricker relationship to set management targets iess riskyapproach for conserving stockversityeven

if the underlying dynamics have no ov@mpensation in them

From the perspectiveof harvest potential, using a Rickerodel for managementeads tolower harvest

rates than those that would produce the maximum sustainable yielthese results suggethat this
management approach could beducing harvest opportunities, if the populatiois truly driven by
BevertortHolt dynamics subject to productivity regime shifisr subsistence fishing, such overestimation

of the optimal escapement goal increases the risk of unnecessary restrictions on harvest which may have
important social consequeees for communities reliant on Chinook salmamanutritional and cultural
resource.

The tradeoffs between providing harvest opportunity and conserving stock diversity under different
management strategies and different levels (and types) of uncertainty should be rigorously explored to
inform management about the most effective waylialancemultiple objectives in a system with high
levels of uncertainty concerning the dynamics of the ecosysg&umh management strategy evaluations

are increasingly important as resources for research and monitoring become scarcer, and as the
ecosystem isubjected to new perturbations such as those caused by ongoing climate change and by the
poorly understood erosion of the aggtructure of the population that has been observed in recent
decades.

Comparison ofOriginaland Revised Model on StodRecruit Aalysis

We examinedthe relationship between spawning stock and recruitment inferred from output from the
original run-reconstruction modetompared toa revised model that eliminated some of the technical
problems we identifiedwith its structure. In particular, the revised model included -fagmally
distributed errors on data collected fromeirs and aerial surveys, the variances were pooled for each of
these survey typesindthe harvest model was also reformulatélthe harvest mdel was changed to an
annual passage adjusted CPUE model, and the likelihood was changed tnoanhag likelihood with
common variance across years and gear types according to:
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where Gis the gear type fished in weel, y indicates yearH indicates fisheries harvest in numbers of
fish, Findicates fishery #ort, p is the proportion of the total run available to the fishery during the weeks
the fishery was open is the catchability coefficient) is the estimated total abundance of Chinook
salmon in yeay, andcy, is the estimated coefficient of variation for the catchability coeffici€éiur each

year and gear type (i.e., mesh size), catelnrunit-effort was added across weeks and the proportion of
the total run that was available during fishing periods was catedl The summed CPUE was divided by
the proportion of total run available during the open fishing periods and compared to the predicted CPUE
given by the product of the total run and the catchability coefficient for the specific gear type.

These change® the originalmodel seemed to remedy the model instability problems described earlier
in the reportsuch thatthe model converged on a single solution independent of starting vallleshen
compared the output from theriginalmodel using the old loweriver expansions, and the new lower
river expansionsADFGunpublished datato this revised model (using the new lower river expansions).

While the revised model changed the estimates of recruitment produced from individual brood years,
much of the unddying character of this relationship remained unchanged (Figure 45). In particular, the
revised ruaNBE O2 Yy a G NHzOG A2y Y2RS{ @d& NIxéciii#@ionthip &itz3 3Sa G a
considerable overcompensation (i.e., very high escapements leaddtecee recruitment), though the
revised model output suggests weaker overcompensation thaotiginalmodel. In terms of establishing
management reference points, output from each of these three models produced similar estimates of the
escapement that woldl produce maximum sustainable yielgh{pof about 66,00@ 73,000 fish (Table 2).

The revised model estimate of 72,000 with new expansions is slightly higher than the estimate produced
from the originalmodel with new expansions (66,000 fish). The mafiescapements that would produce

at least 90% of MS3pans fromabout 42,00Qto 105,000 for all three models (Table 2, Figure' 48)us,

the revised model (like theoriginal model) leads to estimates ofn§ comparable to the lowest
escapements observed in the system. Whether such low escapements protect stock diversity and
maximize harvest potential from the system remains highly uncerfde. principal difference between

the revised model and the originalodel (both with the old expansion factors) is that the stock is not as
productive as suggested by the original model. In particular, MSY for the revised model is estimated to be

! Note:these MSY basegscapement rangeare for the purpose of model review and diagnostics andrase
being recommended for adoption as a formal escapentgral range.
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about 20% lower than for theriginal model, although these are both suggedtéo occur at similar
escapements.

Table 2. Comparison of the spawner abundances(Sexpected to produce maximum sustainable yield
(MSY) for three differentun-reconstructionmodel scenarios for Kuskokwim River Chinook salmon.
Estimates for theoriginal model are given with old or new lower river expansions of the anadapture
estimates. Estimates from the revised model are only given using the new expansion factors. The upper
and lower bounds for the range of escapements expected to produce at96&stof MSY are also given

for each of the model scenarios.

Spawners Producin
Shsy 90% of MSY

Model Scenario Low High

Revised Model,
New Expansions

71,911 46,138 102,335

OriginalModel,

: 66,335 42,373 94,829
New Expansions

OriginalModel,

Old Expansions 73,431 46,770 105,291

As described in the sections above, these analyses of the-stogkitment relationship assume that the
relationship between the environment and the productivity of the stock is not changing isyatgmatic

way through time (other than yedo-year variation irproductivity). Detailed analysesf this andother
Pacific salmon stocks (e.g., Adkison et al. 1996; Peterman et al. 1998, 2003; Pyper et al. 2005; Dorner et
al. 2008, 208; Ohlberger et ak016; Peterman and Dorner 2012; Kilduff et al. 2014; Malick and Co¥ 2016
suggest severakasondor expecingthat this relationship is not stationary through time. Climatéven
changes in the environment through suphenomenaas the Pacific Decad@iscillation (PDO) and the
North Pacific Gyre Oscillation (NPGO) may causdrEguency changes in stock productivity that affect
the relationship between stock and recruitment. Evidence of {gh changes in the age structure of
Kuskokwim River Chinosklmon, characterized by thdisappearance ahe oldest and largest fish from
the population(Lewis et aR015 Ohlberger et al. 20)8suggests that other poorly understood shifts in
the ecology of Chinook salmppotentially combined with selective hagst, may be producing these
trends. The consequences of these changes in demographic structure for the camaditegg massf
spawnergand therefore the stock productivity) are largely unknosndare currentlybeing investigated

by a separateAYK SSI @ook Salmon Escapement Quality Expert PaHelwever, the direction and
magnitude of change is cause for concems éémographic shiftslriving declines in escapement quality
across the timeseriescan introduce bias intoun-reconstructionand spawnetrecruit model results.
Therefore we encourage vigilance wwatchingfor changes in the productivity of the Kuskokwim River
Chinook stocks by maintaining appropriate fishery and escapement monitdtivagigh it is beyond the
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scope of this modereview, we recommendre-evaluaton of the stockrecruit relationshipin the near
future (and routinely thereafter)with explicit consideration for thepotential effect of declining
escapement qualitpver the time series(e.g.,Jones et a{2018) recentanalysis of the effect of changes
in escapement quality on spawnezcruit model for Canadiaarigin Chinook Salmon in the Yukon River)

Further, given the increasing recognition of the prevalence of stock structure within the Kuskokwim River
Chinook salmn stock complex, it is critical to assess whether the current stecluitment analysis
(which assumes a single homogensatock) produces management reference points that provide robust
measures for protecting sustocks that may experience periodslofv productivity but are harvested
simultaneously with larger or more productive stocks. Thus, we atsommend more detailed
assessment of the stodalecruit dynamics of the overall system with an eye towards understar{diribe
consequences of different harvest strategies for maintaining biocomplexityn the stock complexand

(2) the longterm consequences for sustainability of the stocks under future unknown environmental
shifts.

Recommendations

Based on our review ahanalysis of theriginal stockassessment models used by ADFG for managing
Chinook salmon in the Kuskokwim River, we offer the follow list of recommendations for improving the
performance of these models and, thus, scientifichged management of thisvaluable resource.

RunReconstructioModel Structure

1) Pooling the ovedispersion parameters in the estimation model reduced the normalized RMSE and
bias in run estimates. Additionally, this improved the model stability across starting parameters,
particularly when paired with markecapture estimates across multiple periods. Pooling the -over
dispersion parameters is easily implementatishouldimprove accuracy and reduce bidkowever,
pooling overdispersion parameters alone was not sufficientfitly correctthe estimation problem
in whichthere weremultiple solutions.

2) Theoriginalmodel assumes that the errors on weir and aerial survey data are distributed according
to a negative binomial distsution. We recommend changinipe model to more appropriately
assume that these errors are logprmally distributed. While we have not included detailed analysis
in this report, analysis of simulated data showed tli&ianging the model to include this error
structure improved its stability, albeit modéys We can providamore thorough summary of results
upon requestbut have elected to not includidgaem in this report.

3) Removing the harvest component of the likelihood from the estimation madeatly improved
model stability across starting valueshieh was unexpected. The lack of estimates of totalvar
abundance, patrticularly in the early portion of the tirgeries, coupled with asynchronous dynamics
among sulpopulations generatedmultiple local minima on the likelihood surface, leadingtitical
minimizationproblems However, removing the harvest componeftthe likelihood also increased
the bias in estimates during the early part of the tiseries (as shown in simulation experiments),
because rurestimates in early timeeries no longederived any information from the harvest data
and reliedsolely on relatively few escapement indices. Thus, there are iodidebetween model
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4)

5)

stability andestimationbias when determining the value odtainingthe harvest component of the
likelihood.The harvest component of theriginalmodel appears to be either misspecified or overly
complex, and we recommend that this part of the mobelscrutinized and alternative formulations
considered as a way to improve model performance.

Theoriginalestimation model is highly sensitive to parameter starting values, particularly when fit in
ADMB (though ADMB found the solutions with the best fit by negativdike{ihood). Even the
revisedmodel structures are sensitive to starting values, thougl ks than theoriginalmodel. As

such, the model should be fit across a range of starting values for parameters to explore the likelihood
surface. Negative lolikelihoods of the different solutions should be compared acrbsesrange of
solutions to ensur the best possible fit is being foundls described above, thoor convergence
behavior suggests that the model is overly complex given the information content of the data it is fit
to.

Any new model should be thoroughly tested using simulation exparim All models are simfigd
representations of realityand, thus, require many assumptions about the nature of readrld
dynamics. The potential impacts of violating these assumptions to management activities should be
thoroughly investigatedisingsimulation where the true underlying state of the system is known and
biases or inaccuracies arising fragsumptions in thestimation model can bdetermined

Data Collection

1)

2)

Mark-recaptureestimates of riveiwide abundanceare criticalfor tracking longierm changes in the
stock especiallygiven thatasynchrony and regime shifts are invohiadhe production dynamics of
Chinook salmoin the Kuskokwim systenThese are the onlgources of informatiothat anchorthe
magnitude of annual runs, allowing the estimation of all other parameters in the model. At least some
level of subpopulation asynchrony should be expected among the Chinook salmon populations of the
Kuskokwim River, and without future mar&captureestimates, run estimation errors will become
continually less accurate and more biased as the relative production of different populations changes.
Periodic markecapture data areextremely valuable for capturing the variation in population
productivity that can occur in the KuskokwiRiver These data need not be collected each year, but

if data are collected periodically, the model will be able to adjust its predictions around the time
varying productivity of individual populations. Thus, while fundorgstich projects may be limited at
present, capitalizing on periodic funding opportunities that may dddikely tobe highly valuable.

How often markrecapture programs should be conductetiould be determinedising a formal,
guantitative valueof-information (VOI) approach based on simulatieimilar to those used by this
panelbut with added economic variableSuch VOI analyses will determine how the large expenses
of markrecapture programs compare with the value of the additional catches (aratteer benefits

not quantifiable in dollar termsstaken in future years, and how often such programs are warranted
for reducing model uncertainties. Link and Peterman (1998) conducted this type of VOI analysis to
determine whether a fish wheel for sockeyalmon on the Nass River in British Columbia was
worthwhile; it was. This same VOI approach could also be used to determine the value of various weir
and aerial survey programs, which are at riskbbetoming discontinuedue to budget constraints.
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3)

4)

5)

Disconinuing such assessment programs without an objective assessment of the costs and benefits
(i.e., in being able to properly assess the stock statasjld be careless

More explicit examination of the tradeffs between maintaining a collection of weiasid aerial
surveys versus investing research funding in wisgltem markrecapture estimates of abundance
should be done to optimize futureesearch fundingnvestments. We suspect that maintaining a
networkof weirs and aerial surveys, or investment ther ways to estimate subtock dynamics (e.qg.,
through otolith microchemistry or genetic sampling) across the watershed will be critical
producing reliable abundance estimates in the futuhe.situations where there is considerable
asynchrony among suftock dynamics, the value of any individual weir is likely to increase markedly
as the number of sites monitored declinésowever, these tradeffs have not yet been quantified
and should be rade ahighpriority for future research.

Systematic and ncfinear bias (underestimation of abundance at high actual abundance) is well
documented in aerial surveys of spawning salmon. As the number of spawners in a system increases,
the magnitude of thebias increases. This creates a problem with using aerial indices in an estimation
model that assumes constant proportionality between indices and spawner abundance. This situation
means that, in comparison, the escapement data provided by the weir progetparticularly
valuableduring years when no mattecapture studies areonducted Theoriginalestimation model
generally fits higher ovedispersion parameters for weir projects than aerial surveys, indicating lower
variance of observed weir escapentaelative to the modés expected weir escapement. When
decisions about funding of future monitoring programs beeng made the presumed greater value

of information from weir projects relative to aerial surveys should be considered. Here again, formal
value-of-information analyses would be extremely informative for those funding decisions.

Recent analyses of patternspnoductivity of various Chinook salmon stockgygest that theyhave
become more coherent (positively correlated) in recent yeardKiet al. 2014; Drner et al.2018),

as has been observddr sockeye salmon (Peterman and Dorner 2012) and pink and chimois
(Malick and Cox 2016). Such changes in the degree of synchrony among stock components is one
expression of nosstationarity n population dynamicsyhichmay further affect performance of the
run-reconstructionmodel if Kuskokwim Chinook salmon are characterized by similar changes in
population dynamics within the stock. A simulation approsiafilarto whatwe have used hereoaild

be used to explore the consequences of such changes in the émosythough we anticipatehat
problems arising from changes in synchrony will probably be minor compared to changes driven by
systemwide regime shifts in productivityrto situationswhere data are sparse for estimating model
parameters

StockRecruit Analysis

1)

The relationship between spawning stock and subsequent recruitfioents the biological basis for
estimating the escapement that will maximize sustained production freatmonproducing
ecosystems. In simplified form, such as that currently used to assess the productivity of Chinook
salmon in the Kuskokwim River, it is assumed that the per capita reproductive potential of the
population has remained constant over the cserof the observed time series. However, given the
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2)

3)

widespread observation that the siz&nd agestructure of the population has shifted towards smaller
and younger individuals through time, this assumption is clearly tenuwmighe escapement quality

may have deteriorated through time in response to currently unknown reasbitsvever, given the
uncertainties in the stock assessment process for Kuskokwim Chinook salmon, it remains unclear
whether the productivity of the stock and the management referenomis derived from the stock
assessments are chang in response to shifting agend sizestructure. We recommendre-
evaluation of the stockecruit relationshipwith a) explicit consideration for the potential effesof
declining escapement qualify.e., lower per capita reproductive potentiayer the timeseries and

b) evaluation of potential harvest strategies focused on maintaining the largest, oldest segment of the
population that are disproportionally female, as has been applied to the Kevei @hinook salmon
stocks in recent years (Fleischman and Reimer 2017).

Current stock assessments of Kuskokwim Chinook salmon assume that it is composed of a
homogeneous stock distributed across the watersheidh each tributary contributing a constant
proportion of the total runat any point irtime. What is more likely, given accumulating knowledge in
this and other systems, is that it is actually a stock complex composed of many populations (sub
stocks) that show some degree of demographic indepedeiVhat is not known is how the current
management approach of assuming a single large stock for the purpose of setting allowable harvest
rates risks eroding the diversity of populations that compose the stock complex. Harvest rates
established by assunmgm homogeneous stock run the risk of overexploiting unproductivessagks.

Thus, we recommenthore detailed assessment of the stecruit dynamics of the overall system

to assessa) the consequences of different harvest strategies for maintaitheintegrity of sub

stocks (i.e., thédviocomplexity across the entire watershednd 2) the londerm consequences for
sustainability of the stocks under future known environmental conditidmadeoffs between risk to
biocomplexity and harvest opportunitys a function of the escapement goal, should be gquantified
and usedn establishingand adaping escapement goals as new observations about stock dynamics
accumulate.

The stock assessment process for Chinook salmon stocks in the Kuskokwim Riveraieatiaimging
owing tosubstantial uncertainties in the data and in the ecological processes that generate variation
in abundance. Formal incorporation of these uncertainties into the assessment process has improved
through the development of a statgpace aproach for estimating the stoelecruitment
relationship. However, whether uncertainties in the rectonstruction analyses are properly
integrated into the stockecruitment analysis (that is used to inform management reference points)
is not clear at pgsent. Thecurrentpractice of doubling the CV of the riaconstruction estimates of
abundance as input to the statgpace analysis of sto@ndrecruitment is arbitrary and may have
unintended consequences on the interpretation of the biological stafisestocks. We recommend
more formal exploration of the rumneconstruction model, using a simulation approach like we have
adopted in this report, to develop a better understanding of the true uncertainties of the run
reconstruction estimates of annuabandance.
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Figure 1.Example sulpopulation dynamics generated by the operating model under conditions with
perfect synchrony among syiiopulations (top), synchrony among satocks but with regime shifts in
productivity (top middle), conditions with asynchronous sadpulation dynamics (bottom middle), and
conditions with asynchrony among spbpulations and regime shifts in productivity (bottom). Each line
represents the run size to a single soudpulation.
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Figure 2.Runreconstructions for Chinook salmon in the KuskmkviRiver from theoriginalmodel fit to
observed data under different model structures (individual "Ind" or pooled -oN&wersion parameters)

and with different amounts of markecapture (MR) data available (no new mark recapture estimates, all
new markrecapture estimates, or new markcapture estimates but without the 2017 estimate). Starting
values for these simulations are held constant, at the values currently used by ADFG, across all scenarios
considered here.
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Figure 3.Changes in annual rueoonstruction estimates when switching from thariginal model
(individual ("Ind") ovedispersion parameters and no new madcapture (MR) estimates available) to
different model structures and data scenarios. Starting values for these simulations wdredmstant
across all scenarios considered here at the values currently used by ADFG.
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Figure 4Run estimates across a range of starting values fronotiggnal ADFG R model implemented in

R without new markecapture estimates. Black lines indicatadted grey lines, representing repeated
model convergence on some values. The red line indicates the range in model estimates for annual run
size. The horizontal solid black line represents the mean of the estimate range, while the dashed
horizontal line Bows the maximum range across simulations. The dots with vertical bars are the means
and 95% confidence intervals of the madcapture estimates
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Figure 5As in Fig. 4, but with theriginalrun-reconstruction model implemented in ADMB.
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Figure 6 As in Fig. 4, but with new markcapture estimates available (202016).

IndependentExpertPanelReview Page47



