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Executive Summary 

A four member independent expert panel, assisted by a biometric analyst, was commissioned by the 

Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative to examine the performance of the Alaska 

Department of Fish & Game (ADFG) run-reconstruction model used for estimating the abundance of 

Chinook salmon in the Kuskokwim River and to provide recommendations for model improvements and 

future analysis. The model we evaluated (referred to as the ‘original model’ throughout this report) was 

used by ADFG to estimate Chinook salmon abundance in the Kuskokwim River until April 2018. We used 

two approaches to assess the performance of this model. First, we examined model performance using 

monitoring data collected between 1976 and 2017 to determine the influence of different input data (i.e., 

mark-recapture estimates) and various structures of abundance-estimation models on estimates of total 

run size. Second, we used simulated population data, intended to approximate the dynamics of 

Kuskokwim River Chinook salmon, to assess model performance when true values of model parameters 

and structures were known, as a way to examine model sensitivity (accuracy and bias) to violation of 

different model assumptions. 

The original run-reconstruction model was highly sensitive to starting values used for abundance-related 

parameters; the estimation method found multiple local minima, demonstrating that it was not 

converging properly on a unique solution. The differences between abundance estimates across model 

fits were often large enough to be of management concern. The model convergence problem was reduced 

when over-dispersion parameters were pooled by type of escapement index (i.e., for data from weirs as 

one group, and from aerial surveys as another), and when the harvest component of the likelihood was 

removed. The influence of the harvest component on model stability was unexpected and should be 

explored further. We recommend examining model fits and negative log-likelihoods across a wide range 

of starting parameter values to ensure that the true global minimum negative log-likelihood is found. The 

complexity of the original model is not supportable with the data used to fit it because there are too many 

parameters relative to sources of information to estimate them. Further, the model assumption that 

errors in weir counts and aerial surveys are distributed according to a negative binomial distribution 

should be revised to assume that they are log-normally distributed. 

Mark-recapture estimates of total in-river abundance are critical for interpreting abundance indices 

collected at the tributary scale across the river. Inclusion of the most recent (years 2014-2017) mark-

recapture estimates reduced estimates of the run size of Kuskokwim Chinook salmon produced by the 

original model in the most recent half of the time series. In particular, inclusion of 2014-2017 mark-

recapture studies produced lower abundance estimates for the recent time frame during which Chinook 

salmon abundance has been particularly low. Periodic mark-recapture estimates are critical for minimizing 

potential bias in run size estimates in the future, particularly when population dynamics are not 

synchronous across the river basin, and when the stock responds to changing environmental regimes, as 

appears to have occurred in the last decade. 

The frequency at which mark-recapture studies should be conducted should be evaluated quantitatively 

using a formal value-of-information (VOI) approach based on simulations similar to those used by this 

panel. Such VOI analyses will determine whether and how often the large expense of mark-recapture 

programs is justified, in light of benefits such as the value of the additional catches or reducing the 

https://www.aykssi.org/
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probability of overharvest.  This same VOI approach should also be used to determine the value of weir 

and aerial survey programs, across a range of levels of spatial coverage, because it is probable that 

individual enumeration projects will become increasingly important as sampling coverage of the 

watershed declines, particularly in situations where the stock components do not show synchronous 

dynamics across the river basin, as is apparent for Chinook salmon in the Kuskokwim River.  

Performance of the original run-reconstruction model was only modestly sensitive to its assumptions that 

there are no regime shifts in oceanographic conditions affecting Chinook salmon productivity, and that 

there are synchronous population dynamics among sub-stock components. Analyses of simulated data 

demonstrate that errors in estimates (imprecision and bias) increased when sub-stock dynamics were not 

synchronous across the river, particularly in the presence of environmental regime shifts that cause large 

changes in the productivity of the stocks. However, pooling over-dispersion parameters in the original 

model (or variances in log-normal models) greatly reduced the impacts of regime shifts in asynchronous 

sub-populations on the bias in run estimates (i.e., when the model was misspecified). Pooling had much 

less of an effect when the sub-populations were synchronous.  

Simulations showed that regime shifts producing low frequency changes in population productivity have 

the potential to make population dynamics appear as though they are determined by Ricker stock-

recruitment dynamics (i.e., there is over-compensation in recruitment at high spawner densities) even 

though the simulated data are generated from Beverton-Holt models, which do not exhibit 

overcompensation. The tendency of regime shifts to produce apparent overcompensation was strongest 

when productivities were markedly different from one regime to another (> 4-fold difference in 

productivity), and when the frequency of regime shifts was roughly aligned with the longevity of the fish 

(~4-8 years). Whether the dynamics of Kuskokwim Chinook salmon are produced by overcompensation in 

the stock-recruitment relationship and/or from changing environmental regimes is not clear at present, 

but should be investigated further. Given these uncertainties, management strategies should be adopted 

that are robust to the possibility that either scenario is the true state of nature. 

Simulations showed that assuming that population dynamics were determined by Ricker (over-

compensatory) dynamics when, in fact, they were generated with Beverton-Holt (compensatory) 

dynamics in the presence of environmental regime shifts, led to more biologically conservative 

management benchmarks than if the model incorporated a Beverton-Holt model. Management objectives 

that seek to achieve maximum sustainable yield (MSY) that are supported by analyses assuming Ricker 

dynamics would have escapement goals that were > 2 times higher than the escapement goals based on 

Beverton-Holt models. Thus, because the underlying cause of apparent overcompensation is not currently 

known, assuming Ricker dynamics leads to more biologically precautionary management than assuming 

Beverton-Holt dynamics. Such biologically precautionary management that derives from implicitly 

assuming Ricker dynamics does come with the cost of reduced harvest opportunity, but should also 

provide protection to weak substocks within the Kuskokwim stock complex, which is characterized by 

asynchronous dynamics among its component populations. Future analyses should more fully explore the 

trade-offs among a variety of performance metrics in an attempt to understand the consequences of 

regime shifts and weak mechanistic understanding of the causes and strengths of the anomalously strong 

density-dependence in Kuskokwim Chinook salmon when compared with other Alaska Chinook salmon 

stocks. 
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Estimates of abundance from a ‘revised model’ adopted by ADFG in May 2018 (with log-normal errors on 

weir and aerial survey data, pooled variances within survey types, a reformulated harvest model, and 

integration of the most recent mark-recapture estimates) produced historical abundance estimates that 

tended to be lower than those produced by the original model, particularly in the recent decade. Using 

the revised model estimates as input to a stock-recruitment analysis showed that escapement abundance 

required to achieve MSY (or within 10% of it) would change little from targets based on the original model. 

However, abundance estimates from the revised run-reconstruction model suggest that the population is 

about 20% less productive at Smsy (the escapement that would produce long-term maximum sustainable 

yield) than inferred from output from the original model.   

There is also another important trend to consider. Current observations of the increasing rarity of the 

largest and oldest fish in Kuskokwim Chinook salmon raise concern that the ‘escapement quality’ is 

declining through time, which could contribute to a decline in average per-capita productivity of the stock. 

Long-term changes in various aspects of escapement quality (e.g., size-at-age of the spawners, age 

composition, sex ratio) should be quantified given existing data. Future work should focus on quantifying 

the potential effects of these (and future) changes on the productivity of the stocks, and correspondingly, 

on relevant management reference points using simulation and analysis. Simulation should be used to 

explore the degree to which management reference points should be adjusted to account for changes in 

stock productivity in response to environmental variation and erosion of escapement quality, given the 

uncertainties in the data and the limited ability of the current monitoring program to detect future 

changes in escapement quality and run size. 

Use of the stock-recruitment relationship to establish management reference points currently assumes a 

homogeneous stock of Chinook salmon distributed across the Kuskokwim river when, in fact, there is 

considerable evidence that Kuskokwim Chinook salmon are a collection of smaller stocks with some 

degree of independence in their dynamics. Management strategies that assume a homogeneous stock 

run the risk of overexploiting smaller and less productive stocks, thereby eroding the resilience of the 

overall stock complex to future changes in the environment. Thus, it is important to examine the 

consequences of various harvest regimes for sustainable production over the long-term, as well as 

maintaining the biocomplexity within the system. Maintaining biocomplexity in the system may require 

lower harvest rates in the short-term, and this trade-off should be explicitly examined using simulation 

and analysis of the existing data. 

Any further refinements of the run-reconstruction and stock-recruitment models should be thoroughly 

tested through a simulation approach such as done here, to ensure that model behavior and robustness 

to inevitable violations of assumptions are thoroughly understood.   Such testing of the model will also 

promote a more transparent model development process. 
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Introduction 

The Kuskokwim River is the second largest river in Alaska, draining a remote and vast watershed that 

serves as spawning and nursery habitat for five species of anadromous Pacific salmon, which support 

subsistence, commercial and sport fisheries. Fisheries for salmon are focused primarily on chum and 

Chinook salmon as they return as maturing adults to spawn throughout the watershed. Both species have 

shown large swings in abundance over the last few decades, which have challenged both the stakeholders 

and the managers of these resources. Management is hampered by the difficulties in performing accurate 

stock assessments needed to establish harvest regulations, which are reliant on data that are costly to 

collect from this remote and complex river where funding for sampling and assessment is distinctly 

limited. 

The Chinook salmon stock in the Kuskokwim River is one of the largest wild populations in the world, 

averaging around 250,000 fish between 1976 and 2017. As with other populations in western Alaska 

(ADFG 2013, Schindler et al. 2013, Ohlberger et al. 2016), Kuskokwim Chinook salmon have shown 

precipitous declines in abundance and productivity over the last decade, with little scientific explanation. 

Though sparsely populated, people living throughout the watershed have had to cope with restrictions on 

subsistence fishing opportunities, and directed commercial fisheries for Chinook salmon were closed in 

1987, though incidental harvest still occurs during commercial fisheries directed at chum and sockeye 

salmon. Reduced abundance of Chinook salmon has focused attention on the management process, with 

questions about the reliability of abundance estimates, how uncertainty in these estimates is incorporated 

into management decision-making, and whether management is sufficiently precautionary to protect the 

long-term sustainability of the stock at both the drainage-wide and tributary level. 

Chinook salmon in the Kuskokwim River are managed based on an escapement goal policy (Hamazaki et 

al. 2012; Conitz et al. 2015) where harvest is restricted to achieve an abundance of adult fish on the 

spawning grounds that will sustain the population over the long term. Sustainable escapement goals are 

defined as a level of escapement, indicated by an index or an escapement estimate, that is known to 

provide for sustained yield over a 5- to 10-year period. These goals are used in situations where data 

limitation precludes the estimation of escapement that would produce maximum sustainable yield (MSY). 

The escapement level most likely to produce maximum sustainable yield (Smsy) is estimated from a stock-

recruitment model that relates the number of spawners to the number of recruits produced in the next 

generation. Escapement that produces maximum sustainable yield is typically found at intermediate to 

low spawning densities where there is little competition for high-quality spawning sites among adults, and 

for food resources among juveniles. Fisheries are prosecuted such that the number of fish in an annual 

spawning run that exceeds the escapement goal are allocated for harvest.  

Accurate annual estimates from the Kuskokwim Chinook salmon run-reconstruction model are also 

important because they help guide both in-river management and management of Chinook bycatch in 

marine fisheries in the Bering Sea.  In April 2015, the North Pacific Fishery Management Council (Council) 

took action to lower Chinook salmon bycatch caps in the Bering Sea pollock fishery when the estimated 

Chinook salmon abundance falls near or below a low abundance threshold.  By October of each year, 

ADFG must provide to the Council their ‘3-system index’ consisting of the combined in-river adult Chinook 

salmon run sizes from the Unalakleet, Upper Yukon, and Kuskokwim rivers.  This total estimate is then 

compared to the Council’s identified threshold of 250,000 fish to determine if additional bycatch 

reduction actions by the pollock fleet are required.  While estimates of the abundance of Chinook salmon 
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on the Unalakleet and Upper Yukon rivers are derived largely from direct counts, the Kuskokwim River 

annual estimate relies on the more complex run-reconstruction model to estimate abundance at the 

basin-wide scale.  

Estimates of Chinook salmon abundance in the Kuskokwim River produced by the run-reconstruction 

model also play a key role in determining before the fishing season whether ADFG or USFWS (under 

delegation of authority from the Federal Subsistence Board) will serve as the lead in-season manager of 

the Chinook salmon run within federal waters on the Kuskokwim River.  The vast majority of the 

subsistence harvest occurs in the lower portion of the river within the Yukon Delta National Wildlife 

Refuge. The Kuskokwim River Chinook salmon preseason forecast is currently based on the run-

reconstruction model estimate of abundance in the previous year.  If this estimate indicates that there 

will be insufficient Chinook salmon to meet both escapement and subsistence needs within the watershed 

and, therefore, that harvest must be restricted, the federal subsistence program may take action to limit 

harvest to federally qualified users under section 804 of the Alaska National Interest Lands Conservation 

Act (ANILCA).  Due to depressed runs, action was taken by the Federal Subsistence Board in 2014-18 to 

federally manage the Chinook fishery within Yukon Delta NWR. 

Estimating the escapement most likely to produce maximum sustainable yield (Smsy) is a highly technical 

process that relies on reliable estimates of Chinook salmon abundance through time, the distribution of 

returning fish between harvest and escapement and, in some cases, environmental effects on the 

recruitment process. In principle, this involves the simple process of counting the number of fish caught 

in fisheries and the number that survive to reach the spawning grounds. However, in practice, this is an 

extremely difficult endeavor, particularly in systems as large and remote as the Kuskokwim River where a 

full census of the population is impossible and indicators of abundance are sampled only patchily across 

space and sporadically through time. Even estimating the number of fish captured in fisheries is highly 

uncertain because the bulk of the catch is for subsistence purposes, and there is no centralized location 

where fish are processed and easily enumerated. 

Given these difficulties of sampling Kuskokwim Chinook, statistical models are used to estimate the total 

abundance of fish that return to the river each year. These ‘run-reconstruction’ models are essentially 

mathematical ledgers intended to be a parsimonious representation of the harvest and enumeration 

process as fish return from the ocean and migrate throughout the river to spawn. Run-reconstruction 

models integrate observations that are indicators of abundance; i.e., the number of fish caught in 

fisheries, the number passing through weirs located on a subset of tributaries, and the number of 

spawners on a subset of spawning reaches observed in aerial surveys. All of these indicators are subject 

to substantial uncertainties, including both imprecision and bias, so uncertainties must be accounted for 

explicitly when estimating total run size. Mark-recapture experiments are also used to estimate total 

abundance because they provide an objective way to scale from tributary indicators of abundance to 

estimates of absolute total abundance. However, mark-recapture studies are expensive and are only 

performed periodically. Nonetheless, as we show below, they are critically important to the run-

reconstructions because they provide the only reliable information about the absolute river-wide 

abundance of fish, thereby anchoring the indicators of relative abundance obtained via other 

observations. 

The run-reconstruction model used by ADFG to estimate total abundance of Chinook salmon in the 

Kuskokwim River integrates observations from weirs, aerial surveys, fishery catches, and occasional mark-
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recapture experiments.  The primary challenge lies in relating observations among locations, methods, 

and years because the data are sparse.   As described below, information from harvest, weirs, and aerial 

surveys are weighted equally in the run-reconstruction model used by ADFG to estimate total annual 

abundance of adult Chinook. The model also requires a number of simplifying assumptions to make the 

estimation problem tractable. However, the performance of the run-reconstruction model, its robustness 

to the underlying assumptions, and sensitivity to data quality have not yet been evaluated systematically.  

An Independent Review Panel (henceforth "the Panel") was established by the Arctic-Yukon-Kuskokwim 

Sustainable Salmon Initiative (AYK SSI) in October 2016 to investigate some of the challenges described 

above. The Panel's main objective was to systematically test the ADFG run-reconstruction and spawner-

recruit models for Kuskokwim River Chinook salmon, assess their limitations in light of the types of data 

and their uncertainties available for informing the model, test the influence of the key assumptions, and 

recommend ways to improve the models in the future. Throughout this report we use the phrase ‘original 

model’ to reference the ADFG run-reconstruction model that was used by the department until May, 

2018. We use the term ‘revised model’ to reference the run-reconstruction model that was revised to 

accommodate a number of suggestions from the Panel at a collaborative workshop held in March 2018 

between the Panel and the ADFG model development team. As described below, the revised model 

includes a different error structure and different harvest model from the original model, that appeared to 

remedy most of the problems identified by the Panel in its review of the original model (see Appendix 3). 

The Panel's research questions were guided by some chief concerns about the run-reconstruction model 

that were either reported by ADFG or were raised by stakeholders and previous explorations of the model. 

Those concerns were the following. 

 The first major concern was that the model estimates of total run abundance appeared to be 

sensitive to the starting parameter values, an indication that either there was a structural flaw in 

the model, its parameterization was inappropriate, the data were not informative concerning 

abundance, or the method used for parameter estimation was not performing as expected.  

 

 Second, the original model assumed that the proportional returns of Chinook salmon to the 

different tributaries throughout the Kuskokwim River are perfectly synchronous through time. 

This assumption is tenuous given the expanding literature documenting the diversity in 

population dynamics of salmon at regional and within-watershed scales. Although there is 

evidence of positive correlation in productivities among salmon populations, including Chinook 

salmon, there also is residual variation that is not shared among populations at one or both of 

those scales (e.g., Peterman et al. 2003; Pyper et al. 2005; Dorner et al. 2008, 2018; Rogers and 

Schindler 2008; Schindler et al. 2010; Sharma et al. 2013; Kilduff et al. 2014). However, the 

sensitivity of the run-reconstruction model to the assumption of perfect synchrony has not been 

assessed.  

 

 Third, the original model assumed that production dynamics of Chinook salmon in the Kuskokwim 

are stationary through time, i.e., that changes in abundance are driven by a relationship between 

the spawning stock and recruitment whose parameters do not vary through time. Again, the 

assumption of stationarity is tenuous given the substantial empirical evidence that salmon 

populations, including those of Chinook salmon, routinely demonstrate non-stationarity (i.e., 

change in mean and/or variance) in their dynamics (Adkison et al. 1996; Peterman et al. 1998, 
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2003; Pyper et al. 2005; Dorner et al. 2008, 2018; Ohlberger et al. 2016; Peterman and Dorner 

2012; Kilduff et al. 2014; Malick and Cox 2016). The influence of such non-stationarity on 

performance of the Kuskokwim run-reconstruction model has not been assessed systematically.  

 

 Fourth, the original model relied heavily on abundance metrics derived from aerial surveys of fish 

on the spawning grounds. While these data are markedly cheaper to collect than data from weirs 

and mark-recapture studies, they are well-known to be highly uncertain, are usually biased, and 

their influence on the run-reconstruction model were unexplored.  

 

 Fifth, the influence of mark-recapture data on the run-reconstruction model output has not been 

evaluated. Mark-recapture estimates of abundance are the only system-wide estimate of 

absolute abundance and therefore inform most other parameters in the model by providing a 

scalar to relate the relative abundance indices to absolute abundance. The value of recent mark-

recapture estimates of abundance (2014-2017) for affecting model performance has not been 

assessed, particularly in light of the concerns described above. 

 

 Finally, the stock-recruitment relationship implied by the model’s abundance estimates 

demonstrates very strong density-dependence (strong overcompensation at high spawner 

densities, in fact) and suggests that escapement goals should be reduced if maximizing yield is the 

goal of management, an action that has poorly understood consequences if the estimated 

relationship were incorrect. 

 

In response to this list of concerns, and from some general interests of the Panel, analyses were structured 

around the questions listed below. We used two primary approaches in our model assessment. First, we 

evaluated how sensitive the original run-reconstruction model was in terms of its estimates of total 

abundance of Chinook salmon when analyzing the existing data for the Kuskokwim River. Second, we used 

a simulation approach to assess model performance where an ‘operating model’ was constructed to 

simulate reasonable approximations of the population dynamics of Chinook salmon in the Kuskokwim 

River, but where we could specify the critical parameters and assumptions. The data resulting from these 

simulations were then ‘sampled’ and interpreted via the original run-reconstruction model to assess its 

ability to accurately infer the true underlying dynamics of the simulation. This approach provides an 

objective way to assess the biases and limitations of the original run-reconstruction model across a range 

of conditions that reflect different possibilities about the true nature of the dynamics of Chinook salmon 

in the Kuskokwim River. 
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The Panel's Main Questions 

1. What modifications to the original run-reconstruction model (i.e., estimation model) could 

alleviate starting value sensitivity? Are there structural changes to the model and its associated 

estimation scheme that would make it more stable and insensitive to starting conditions? 

2. What are the effects of the following assumptions on the run-reconstruction model's 

performance?  

a. Synchrony in the productivity parameter that affects residuals in loge(R/S) from the 

underlying spawner-recruit model among stocks in different spawning tributaries 

b. Temporal autocorrelation in residuals of loge(R/S) and regime shifts in population 

productivity parameters (Ricker α or Beverton-Holt α/β) 

c. The non-linearity of biases in aerial survey indices of escapement 

3. How does the availability of different data types affect run-reconstruction model performance? 

a. What is the influence of mark-recapture data on model performance?  

b. Does the influence of mark-recapture data interact with underlying recruitment dynamics 

(i.e. synchrony, temporal autocorrelation, and existence of regime shifts) to affect model 

performance? 

4. How does the parameterization of the run-reconstruction model affect its performance? 

a. Does estimating individual vs. pooled escapement over-dispersion parameters lead to 

better estimation performance and stability? 

b. What are the effects on model behavior and performance of the original assumption of 

a negative-binomial error distribution on weir and aerial survey abundance indices 

compared to an alternative assumption of log-normally distributed errors? 

c. Is the component of the model that estimates harvest properly formulated and integrated 

into the likelihood calculations?  

5. What are the potential management implications of errors produced by the concerns raised above 

in terms of: 

a. The model estimate of escapement that produces MSY (Smsy) from analyses of spawning 

stock size and subsequent recruitment? 

b. The lost potential harvest rate in the system from mis-specifying the true Smsy? 

6. If regime shifts in recruitment productivity produce abundance dynamics that appear to be 

driven by strong density-dependent regulation (i.e., overcompensation), 

a.  What are the implications of such dynamics for estimating escapement that produces 

MSY (Smsy)? 

b. What are the implications for estimates of the sustainable harvest rates from mis-

specifying the true Smsy? 

 

Approach 

We used two approaches to assess the performance of the ADFG run-reconstruction model for Chinook 

salmon on the Kuskokwim River: (1) fitting the run-reconstruction model to the observed data sets 

supplied by ADFG, but with various modifications to that model's structure, and (2) fitting ADFG's original 

run-reconstruction model, as well as various modifications to it, to simulated data sets where the true 

parameter values and run sizes are specified and are intended to simulate alternative plausible states of 
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nature for the Kuskokwim River. A limitation of examining model performance on observed data is that 

the true state of the system is never known and there is no way to assess whether the model is actually 

capturing the true underlying dynamics in the system. Simulations allow for testing the model under 

different scenarios while being able to compare model fits to true values (Hilborn and Walters 1992). 

 

Structure of the Estimation Model 

The original run-reconstruction model used by ADFG for stock assessment relied on estimates of total in-

river abundance from mark-recapture experiments to scale the abundance of Chinook salmon in the 

Kuskokwim River across the period of data collection, which includes many years without system-wide 

assessments of escapement. Relationships between the escapement indices at various monitoring 

projects and total escapement, as well as between harvest, effort and Chinook salmon abundance in years 

with information on total in-river abundance are used to estimate the abundance in years without direct 

estimates of total abundance. The run-reconstruction model incorporates information across all of these 

data sources in multiple sub-models that are combined into a single likelihood to determine the most 

likely parameter estimates, including annual estimates of total run size. 

 

Run timing 

Run timing was assessed using information from the Bethel test fishery, provided by the ADFG. The 

proportion of the Chinook salmon run present in week j and year y is assumed to be reflected by the catch 

rate in the fishery, as: 

 𝑝𝑦𝑗 =
𝐶𝑃𝑈𝐸𝑦𝑗

∑ 𝐶𝑃𝑈𝐸𝑦𝑗𝑖
, (1.1) 

 

where CPUE is the catch-per-unit-effort of the test fishery (Bue et al. 2012). 

 

Escapement Indices 

Escapement is monitored at multiple locations and by multiple methods in the Kuskokwim River basin. 

ADFG and the US Fish and Wildlife Service (USFWS) have maintained six weirs for varying lengths of time, 

with the earliest being started in 1976 (Kogrukluk River). Weir counts were sparse before 2001, but much 

more consistent across all systems and years since 2001. However, only nine years have data from all six 

weirs available. Weir escapement counts typically monitor less than 20% of the estimated total run to the 

Kuskokwim River (Bue et al. 2012). 

The original ADFG run-reconstruction model assumed that each weir enumerates a constant proportion 

of the total escapement to the Kuskokwim River each year (i.e., the relative runs to each tributary are 

perfectly synchronous through time), and thus that the expected weir count 𝐼 at site w in year y is related 

to total Chinook salmon escapement E in year y by: 
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 𝐼𝑤𝑦 =
𝐸𝑦

𝑘̂𝑤
, (1.2) 

where 𝑘̂𝑤 is the escapement index scaling factor for weir w. 

ADFG has also conducted aerial escapement surveys on 14 tributary systems since 1976. As with the weir 

data, the aerial escapement data are patchily available through time. Only one year (2004) has data 

available from all 14 aerial index streams.  

The run-reconstruction model assumed that, as is the case for weirs, each aerial survey index represents 

a constant proportion of the total escapement each year, and thus that the expected aerial survey index 

𝐼 in at site a in year y is related to total Kuskokwim River Chinook salmon escapement E in year y by: 

 𝐼𝑎𝑦 =
𝐸𝑦

𝑘̂𝑎
, (1.3) 

where 𝑘̂𝑎 is the escapement index scaling factor for aerial index location a. 

In the original model, the likelihood of weir and aerial survey indices were assumed to be negative-

binomially distributed around the expected indices estimated from the total escapement (E) and site 

specific scaling factors (k) according to: 

 

𝑓(𝐼𝑤𝑦; 𝐼𝑤𝑦; 𝑚̂𝑤) =
𝛤(𝑚̂𝑤+𝐼𝑤𝑦)

𝛤(𝑚̂𝑤)𝐼𝑤𝑦!
(

𝐼𝑤𝑦

𝑚̂𝑤+𝐼𝑤𝑦
)
𝐼𝑤𝑦

(
𝑚̂𝑤

𝑚̂𝑤+𝐼𝑤𝑦
)
𝑚̂𝑤

, 

𝑓(𝐼𝑎𝑦; 𝐼𝑎𝑦; 𝑚̂𝑎) =
𝛤(𝑚̂𝑎+𝐼𝑎𝑦)

𝛤(𝑚̂𝑎)𝐼𝑎𝑦!
(

𝐼𝑎𝑦

𝑚̂𝑎+𝐼𝑎𝑦
)
𝐼𝑎𝑦

(
𝑚̂𝑎

𝑚̂𝑎+𝐼𝑎𝑦
)
𝑚̂𝑎

, 

 

(1.4) 

 

(1.5) 

where 𝐼𝑤𝑦 is the expected (i.e., model-based) value of weir escapement index 𝐼𝑤𝑦, 𝑚̂𝑤 is the over-

dispersion parameter for weir site w, 𝐼𝑎𝑦 is the expected value of aerial escapement index 𝐼𝑎𝑦, and 𝑚̂𝑎 is 

the over-dispersion parameter for aerial survey site a (Bue et al. 2012). 

 

Harvest 

The harvest component of the estimation model relates weekly (j) harvest and effort data in the fishery 

to total estimated abundance by week (𝑁̂𝑦𝑗) by estimating a catchability coefficient (q) for each of three 

different fishing regulation periods. Total estimated abundance by week was calculated as: 

 𝑁̂𝑦𝑗 = 𝑁̂𝑦𝑝𝑦𝑗, (1.6) 

 

where 𝑁̂𝑦 is the estimated total run size for year y and pyj is the proportion of the run returning the river 

in week i of year y .  
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The log-likelihood of catchability estimates were calculated as: 

 

𝐿(𝑞, 𝑁̂𝑦|𝐹𝑦𝑗 , 𝐻𝑦𝑗) = ∏ ∏
1

𝜎𝑠√2𝜋
𝑒𝑥𝑝 (

log(𝐹𝑦𝑗)−log⁡(𝐹̂𝑦𝑗)

2𝜎𝑠
2 )

2

𝑗𝑦 , 

𝐹̂𝑦𝑗 = − log(1 −
𝐻𝑦𝑗

𝑁̂𝑦𝑗
) /𝑞 

(1.7) 

where 𝐹𝑦𝑗  is the fishing effort in year y and week j, 𝐻𝑦𝑗 is the fisheries harvest in year y and week j, and n 

is the total number of observations of harvest for catchability coefficient q. Separate q parameters were 

estimated for each of the three different regulation periods. As in Liller and Hamazaki (2017), the 

concentrated likelihood function was used to eliminate the need for estimation of variance for commercial 

efforts. 

 

Total In-River Abundance 

Total in-river abundance estimates were available from two separate mark-recapture projects, and these 

were used to anchor the rest of the run-reconstruction model so that it could estimate total abundance 

in years when only harvest, aerial surveys or weir data are available. One mark-recapture project operated 

from 2008 through 2012, and another produced estimates from 2014 through 2017. The latter four years 

are what we refer to in this report as "new" mark-recapture data. Until May 2018, only the 2008-2012 

estimates were used by ADFG within the Chinook salmon run-reconstruction model due to concerns about 

comparability of the estimates from the early and later periods. The Panel's starting-parameter sensitivity 

analyses were run prior to the 2017 mark-recapture estimates becoming available and, as such, they were 

run without those estimates. 

The negative log-likelihood of total run abundance was calculated as: 

 𝑁𝐿𝐿(𝑁̂𝑦|𝑅𝑦, 𝜎𝑟𝑦) =
1

2

(𝑅𝑦−𝑁̂𝑦)
2

𝜎𝑟𝑦
2  , (1.8) 

where 𝑅𝑦 is the run size estimate from the mark-recapture study in year y, and 𝜎𝑟𝑦 is the standard 

deviation of the run size estimate from the mark-recapture study in year y. 

The different likelihood components are given equal weight when the combined likelihood across all 

parameters was calculated. 

 

Alternative Structures of the Estimation Model 

The Panel examined three alternative estimation-model structures in addition to the ADFG original model 

described above. One alternative model, hereafter referred to as the “pooled” model, assumed that 

escapement indices of the same type (weir / aerial) had shared over-dispersion parameters. Instead of six 

𝑚̂𝑤 parameters (one for each weir location) and 14 𝑚̂𝑎 parameters (one for each aerial survey location), 

the pooled model has only one 𝑚̂𝑤 and one 𝑚̂𝑎 parameter that was shared among escapement indices 

of the same type.  
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The second alternative estimation model, hereafter referred to as the “no-harvest” model, ignored the 

harvest component of the likelihood (eqn. 1.7). The weekly effort data were not included in the data set; 

thus, the combined likelihood only included the total run and escapement component.  We investigated 

this alternative estimation model because during certain analyses, we noted a strong effect of omitting 

harvest data, as we discuss later. 

The third alternative estimation model combined the pooled and no-harvest models. This model will be 

referred to as the “pooled/no-harvest” model. 

 

Operating Model Structure 

Simulation experiments allow us to examine the potential biases produced by an estimation model by 

comparing its output across various parameter sets of an operating model that is parameterized to 

simulate different plausible states of nature. To run simulation experiments, we developed an operating 

model to generate (1) population dynamics that resemble the general patterns of the Kuskokwim Chinook 

salmon population, (2) commercial fishery effort and harvest, as well as (3) generate pseudo-observations 

of the system that are intended to emulate weir counts, aerial survey indices, and mark-recapture 

estimates of total in-river abundance (see Appendix 4 for computer code).  

 

Population structure and dynamics 

The number of Chinook salmon returning to the Kuskokwim system during year y , , is given by 

 𝑁𝑦 =⁡∑∑𝑚𝑝,𝑦−𝑎,𝑎𝑅𝑝,𝑦−𝑎
𝑎𝑝

 (2.1) 

 
Where mp,y-a,a is the proportion of animals of age a from population p that return during year y,  Rp,y-a is 
the total recruitment from population p for brood year y :  

 

 𝑅𝑝,𝑦 = 𝑃𝑝(𝐸𝑝,𝑦)𝑒
𝜎𝑟𝑝𝜀𝑝,𝑦−𝜎𝑟𝑝

2 /2 (2.2) 

where Pp(Ep,y) is the stock-recruitment relationship for population p, σrp is the standard deviation of 
recruitment anomalies for population p, εp,y is the recruitment residual for population p in year y: 

 𝜀𝑦,𝑝 = ⁡𝜌𝜀𝑦−1,𝑝 +⁡√1 − 𝜌2𝜂𝑦,𝑝 𝜂𝑦,𝑝⁡~⁡𝑀𝑉𝑁(0, 𝝈𝑟
2) (2.3) 

where σr
2 is the variance-covariance matrix for drawing multivariate normal process errors for each 

population, and  is the magnitude of autocorrelation in recruitment anomalies. The variance-covariance 

matrix of sub-population recruitment anomalies were generated as: 

 
𝑪𝑶𝑹 = [

1 ⋯ 𝑧
⋯ 1 ⋯
𝑧 ⋯ 1

], 

 

 

yN


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𝑽 = [

𝜎𝑟1𝜎𝑟1 ⋯ 𝜎𝑟1𝜎𝑟𝑛
⋯ ⋯ ⋯

𝜎𝑟1𝜎𝑟𝑛 ⋯ 𝜎𝑟𝑛𝜎𝑟𝑛
], 

 

(2.4) 

 𝝈𝒓
𝟐 = 𝑪𝑶𝑹 ∘ 𝑽,  

where z is the minimum correlation among sub-population productivity residuals, and n is the total 

number of sub-populations, and values noted by ellipses in COR are linearly interpolated between 1 and 

z down rows and columns. Values on the diagonal of COR are all equal to 1. 

 

All sub-populations' recruitment dynamics were generated from either Beverton-Holt or Ricker stock-
recruitment relationships: 

 

𝑃(𝐸𝑝) = ⁡{

𝛼𝑝𝐸𝑝𝑒
−𝛽𝑝𝐸𝑝 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Ricker

𝛼𝑝𝐸𝑝

𝛽𝑝 + 𝐸𝑝
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Beverton − Holt

 

(2.5) 

To simulate the effect of regime shifts on ecosystem productivity, two levels of productivity were 

generated for each population by setting productivity at the origin (α in Ricker relationship, α/ in 

Beverton-Holt relationship) to 10 for periods of high productivity, and to 5 for periods of low productivity. 

Maximum abundance of recruits for each sub-population (p for the Beverton-Holt, p/(pe) for the 

Ricker) was randomly drawn from a normal distribution N(mean=25 000, standard deviation=6 000) to 

simulate populations of different sizes. 

Throughout all simulations, we assumed a constant age-structure (19% total age 4, 38% total age 5, 39% 

total age 6, and 4% total age 7) across brood years and populations, informed by age-structure estimates 

in the Kuskokwim River Chinook populations. 

 

Harvest Dynamics 

Harvest was assumed to occur exactly as specified in the estimation model, where total harvest was 

calculated as: 

 
𝐻𝑦𝑗𝑝𝑎 = 𝑁𝑦𝑗𝑝𝑎𝑆𝑎(1 − 𝑒−𝑞𝐹𝑦𝑗), 

𝑁𝑦𝑗𝑝𝑎 = 𝑁𝑦𝑝𝑎𝑝𝑦𝑗𝑝, 

(2.6) 

(2.7) 

 

where 𝐻𝑦𝑗𝑝𝑎 is the true harvest in year y week j of age a fish from sub-population p, 𝑁𝑦𝑗𝑝𝑎 is the number 

of age a fish from sub-population p present in week j of year y, 𝑆𝑎 is fishery selectivity for age a fish, q is 

the specified catchability coefficient, 𝐹𝑦𝑗  is the fishery effort in week j of year y, 𝑁𝑦𝑎𝑝 is the number of 

age a fish from sub-population p returning to the Kuskokwim during year y, and 𝑝𝑦𝑗𝑝 is the proportion of 

all fish in population p in year y returning in week j. The operating model assumed a single fishery. 

We varied annual fishing effort such that mean annual harvest rate was 0.49, and individual year harvest 

rates varied between ~0.05 and ~0.8, with the distribution of values being negatively skewed (median 
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harvest rate =0.53, sd = 0.21) due to the saturating relationship between effort and harvest rate (eqn. 

2.6). 

Observations 

In the simulations, 6 of the 40 sub-populations were monitored for escapement using weirs, while 14 

other sub-populations were monitored using aerial surveys. We assumed that all of the salmon entering 

the systems with weirs were counted, while aerial surveys counted only a proportion of the total number 

in the system. 

 
𝐼𝑤𝑦 = 𝑁𝑝𝑦𝑒

𝜀𝑤, 

𝐼𝑎𝑦 = 𝑁𝑝𝑦𝐴𝑒
𝜀𝑎, 

 

(2.8) 

(2.9) 

where A is the proportion of the total run that is counted by aerial surveys, 𝜀𝑤 is the observation error on 

weir counts, and 𝜀𝑎 is the observation error on aerial surveys. This generates log-normal errors in 

escapement indices, which is different from those assumed in the estimation model (negative-binomial). 

This allows for smaller amounts of observation errors to be assessed, because the negative binomial 

distribution requires variance to be greater than the mean. As an alternative scenario, we assumed that 

aerial surveys were increasingly biased low as escapement increased: 

 
𝐼𝑎𝑦 = 𝑒0.59𝑁𝑝𝑦

0.83𝑒𝜀𝑎 (2.10) 

where the exponents in equation 2.10 are from Jones et al. (1998). 

Mark-recapture estimates of the total Chinook salmon in-river abundance were generated with: 

 
𝑅𝑦~𝑙𝑁(𝑁𝑦, 𝜎𝑚𝑟), (2.11) 

where 𝜎𝑚𝑟 was similar to the coefficient of variation of actual mark-recapture estimates in the given year  

(0.15 for original mark-recapture series, 0.05 for recent mark-recapture series). 

Harvest and fishing effort were assumed to be observed with small observation errors (log-normal error 

0.00001). This was a conservative approach towards assessing the utility of the harvest component of the 

model; in reality, there is probably substantial uncertainty in characterizing the subsistence fishery that 

dominates catch in this system. To simulate the irregularity of data availability across years, observations 

of escapement and total run were removed in all years for which there were no data available in the actual 

data set. 

 

Simulation Scenarios 

To examine the impacts of different assumptions on the performance of the estimation model, we 

generated data sets using the operating model that were intended to simulate alternative, but plausible, 

states of nature (Table 1).  The primary assumptions that we examined were (a) the degree of synchrony 

among sub-populations, (b) the presence or absence of regime shifts in productivity, and (c) the presence 
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or absence of non-linearity in aerial survey indices. Additionally, we examined the impacts of various levels 

of data availability by running scenarios where only the old mark-recapture estimates were available, and 

scenarios where both the old and new estimates were available. Finally, we examined the accuracy and 

bias of the different estimation model structures (i.e., base model, pooled model, no-harvest model, and 

pooled/no-harvest model). 

We characterized the different assumptions used in our analyses as follows. In scenarios where the sub-

populations showed varying degrees of independence in their recruitment dynamics (i.e., were not 

perfectly synchronous with one other), the average correlation among residuals in loge(R/S) of sub-

populations was 0.29, the maximum correlation between a pair of stocks was 1, and the minimum was -1. 

Regime shifts were implemented at random, with a probability of occurring in each year of (1/regime 

frequency). A regime shift caused all populations to switch from a high-productivity phase to a low-

productivity phase, or vice versa. Scenarios without aerial survey bias used equation (2.8) to generate 

aerial survey indices of escapement, while those that assumed bias in aerial surveys used equation (2.9). 

Finally, we assessed the performance of the estimation model under scenarios that included differing 

number of years of mark-recapture estimates that are used to inform the other parameters of the run-

reconstruction model. Example sub-stock dynamics across different assumptions are shown in Fig. 1. 

 
Table 1. Parameters and data sets that were varied under alternative scenarios to test the effect of violating 

assumptions on the accuracy and bias of the original run-reconstruction model.    

 

Parameter/ 

Data Type 

Original Model 

Assumption 

Alternative 

Parameterization 

Population synchrony 

(average correlation) 

 

1 0.29 

Regime-shift frequency 0 

 

~1/20 yr 

Aerial survey bias constant Increases with N 

   

Mark-recapture estimates 2003-2007 2003-2007, 2014-2017 

 

 

Model Diagnostics 

Performance of the estimation model was quantified using several metrics. To assess the accuracy of 

annual run estimates for the entire Kuskokwim system, we calculated the normalized root mean square 

error (NRMSE): 

 

𝑁𝑅𝑀𝑆𝐸 =
∑ √(𝑵𝒚̂ −𝑵𝒚)

2
𝑦

𝑵̅
 

(3.1) 
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of model-estimated annual run size 𝑵𝒚̂ relative to specified values from the operating model 𝑵𝒚. We 

normalized the root mean square error by the average run-size 𝑵̅ across all years to make model 

performance comparable across different stochastic iterations of the model. 

We calculated the absolute value of the relative error and bias in run estimates as: 

 
𝑅𝐸𝑦 = |

𝑥𝑦 − 𝑥𝑦

𝑥𝑦
| 

 

𝐵𝑖𝑎𝑠𝑥 =

∑
𝑥𝑦 − 𝑥𝑦
𝑥𝑦

𝑦

𝑦
 

(3.2) 

 

 

 

(3.3) 

where x is the specified value of the parameter or variable (e.g., run size) of interest from the operating 

model output, and 𝑥 is the model estimate of the parameter from the estimation model. 

We ran multiple iterations (n=500) for a subset of the model scenarios to examine the coverage 

probability of model estimates. Here we examined how often the simulated run size fell within the 

confidence interval for each year’s run estimate under scenarios with either synchronous or asynchronous 

sub-population dynamics, with or without regime shifts, and with or without the recent mark-recapture 

data being available. All scenarios run in the coverage analysis had observation error incorporated, as well 

as non-linear bias in the aerial survey indices. 

In addition to examining the accuracy and bias of parameter estimates, it was important to consider the 

management implications of such errors. To examine whether the estimates derived from the run-

reconstruction produced apparent over-compensatory dynamics while being produced by Beverton-Holt 

production functions, we fit the Shepherd production function to the spawner and recruitment estimates 

derived from the run-reconstruction model: 

 

𝑙𝑛(𝑅𝑡) = 𝑙𝑛(
𝛼𝑆𝑡

1 + (
𝑆
𝐾)

𝛽
)+ 𝜑𝜔𝑡−1 + 𝜀 

𝜔𝑡 = ln(𝑅𝑡) − 𝜇𝑡 

𝜀~𝑁(0, 𝜎𝑟) 

(3.4) 

 

where R is the number of recruits produced by spawners S, and α, β and K are estimated parameters,⁡𝜔𝑡−1 

is the recruitment residual in time t-1 and 𝜑 is a measure of temporal autocorrelation in recruitment 

residuals. The shape of the Shepherd spawner-recruit curve depends on the value of β, where β > 1 

produces over-compensatory dynamics, β = 1 produces a Beverton-Holt curve, and β < 1 produces only 

weak compensation in production dynamics. We examined the values of β estimated across a range of 

regime-shift strengths and durations to examine the conditions under which populations produced by 

Beverton-Holt dynamics would produce apparent over-compensation. 
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To examine the management implications of finding over-compensatory dynamics when they are not the 

true underlying driver, we first calculated 𝑢̂𝑚𝑠𝑦 (the harvest rate that would produce maximum 

sustainable yield MSY) and 𝑆̂𝑚𝑠𝑦 (the spawning escapement that would produce MSY) from a Ricker 

spawner-recruit relationship fit to brood table data generated from the estimation model output 

aggregated across the entire river basin. We used a Ricker stock-recruit function because this is the 

relationship used by ADFG to estimate the spawner-recruit relationship for Chinook salmon in the 

Kuskokwim River, and also because a Beverton-Holt relationship provided a poor fit to the aggregate (i.e., 

when sub-population structure is ignored) spawner-recruit data.  

We fit the Ricker spawner-recruit relationship with autocorrelated residuals as follows: 

 ln(𝑅𝑡) = 𝑙𝑛(𝛼) + ln(𝑆𝑡) − 𝛽𝑆𝑡 + 𝜑𝜔𝑡−1 + 𝜀 

𝜔𝑡 = ln(𝑅𝑡) − 𝜇𝑡 

𝜀~𝑁(0, 𝜎𝑟) 

(3.5) 

where 𝜔𝑡−1 is the recruitment residual in time t-1 and 𝜑 is a measure of temporal autocorrelation in 

recruitment residuals (this equation is used in Hamazaki et al. 2012). We then simulated the sub-

populations forward fifty years across a range of harvest rates (from 0 to 0.99, held constant across all 

fifty years) to determine the harvest rate (and escapement goal) that would produce MSY. We examined 

the error in the estimates calculated from the Ricker function to determine if assuming a Ricker spawner-

recruit relationship causes management reference points to over- or under-harvest fish, and how the 

presence and characteristics of regime shifts affect any management reference points. 

 

Starting-Parameter Sensitivity 

To examine the sensitivity of the estimation model to starting values of total adult abundance (run size), 

a concern highlighted by ADFG staff (Hamazaki and Liller 2015), we fit the model across 100 different 

starting values for run size and examined the solutions produced by the estimation model. We considered 

a range of starting values from 100 000 to 400 000 (using the same starting value for all years), which 

brackets the previously estimated run sizes estimated for Chinook salmon in the Kuskokwim River. We 

examined the sensitivity of the model estimates to starting values using all four of the Panel's alternative 

model structures (Table 1) to determine why any minimization issues may have been occurring and to 

examine potential model-structure fixes to this issue. The starting-value issue was examined in the 

estimation model implemented in two modeling platforms, the R Statistical Computing Environment (R 

Core Team 2016) and AD Model Builder (ADMB; Fournier et al. 2012), as well as using both the actual 

Kuskokwim River Chinook salmon data and simulated data sets generated by the process model. For 

simulated data sets, we considered a range of starting values from 0.8 to 1.2 times the mean mark-

recapture estimate of the simulated data set. 
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Results 

Effects of Data-Availability on Run Size Estimates 

Mark-recapture estimates from 2014-2017 were not included in official ADFG run-reconstruction analyses 

prior to May 2017 due to concerns about comparability with older mark-recapture estimates (e.g., 

estimates were made for different sections of river in different years, and used different methods to 

estimate downstream escapement). Stakeholders have raised concerns regarding the exclusion of recent 

mark-recapture estimates from the recent run-reconstruction analysis.  For the analyses described in this 

report, ADFG supplied standardized estimates of mark-recapture for both the recent projects (2014-2017) 

and older projects (2003-2007), which allowed us to explore the effects of different amounts of data and 

alternative structures of the run-reconstruction model on the estimates of run-size in recent years. Both 

sets of mark-recapture estimates were standardized to the in-river abundance of Chinook salmon 

upstream of Birch Tree Crossing (river kilometer 294), plus estimates of unmonitored escapement to 

downstream tributaries. The original downriver escapement expansions were estimated from modeled 

relationships between watershed size and productivity using monitored reference tributaries to scale 

unmonitored tributaries (Schaberg et al. 2012). These expansions were found to be biased high (ADFG, 

unpublished data), and the new lower river expansions are on average 62% of the expansions reported in 

Schaberg et al. (2012), resulting in smaller total run estimates using the new expansions. 

Regardless of whether new mark-recapture data were included or excluded, run size estimates followed 

qualitatively similar trends throughout the time series (Fig. 2). However, exclusion of the newest set of 

mark-recapture estimates resulted in slightly higher run-size estimates in recent years (2011-2017), 

regardless of whether over-dispersion parameters were pooled or unique for different escapement 

indices (Fig. 2). While there were consistent differences in point estimates of run size, estimates from all 

models fell within the confidence intervals of all other model estimates (Fig. 2), indicating no statistically 

significant difference between model runs. Run-estimate differences between the different model 

structures and data sets were greater in the early years of the data set than in later years (Fig. 3). 

 

Starting-value Sensitivity in Estimation Model Using Observed Data 

The original estimation model was sensitive to starting values of run size, arriving at multiple solutions, 

regardless of whether new mark-recapture estimates were included (Figs. 4-8). This issue was particularly 

problematic when fitting the model in ADMB (Fig. 5, 7, 8), but it was still an issue when fitting in R (Figs. 

4, 6, 8). The average difference in annual run estimates across model solutions was 18,320 when fit in R 

(Fig. 4) and 75,670 when fit in ADMB (Fig. 5) without new mark-recapture estimates, while the maximum 

difference (red lines in Figs. 4-7) was 49,550 in R and 220,300 in ADMB. When new mark-recapture 

estimates were available, the differences among solutions across starting values improved slightly, with 

mean values of 11,470 in R (Fig. 6) and 57,940 in ADMB (Fig. 7) and maximum values of 55,650 in R and 

195,500 in ADMB. However, while the range of solutions found by ADMB was much wider than in R, the 

best solutions found in ADMB had lower negative log-likelihood values than those found in R, indicating 

better fits to the data (Fig. 8). These multiple solutions in annual run-size values are a concern because 

they can have different management implications in terms of future decisions and interpretation of the 

effectiveness of past regulations. The different solutions, many of them found repeatedly by the 

estimation procedure, had different minimum negative log-likelihood values, suggesting the presence of 
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multiple local minima across the likelihood surface, potentially due to over-parameterization of the 

estimation model (Fig. 8). Further, the different repeated model solutions were arrived at across the entire 

range of starting values (Fig. 8). 

To examine whether the apparent over-parameterization resulted from the unique over-dispersion 

parameters for each escapement project, we examined the effect of starting values on model estimates 

when using the pooled model, and when including or excluding the newest mark-recapture estimates of 

total escapement. Pooling the over-dispersion parameters into a single parameter for aerial surveys and 

another for weirs reduced the variability among model fits for most implementations of the model (Figs 

9-12). The model with pooled over-dispersion parameters in R without the new mark-recapture estimates 

had a lower mean (16,290) and maximum (47,260) difference among run estimates (Fig. 9) than when 

over-dispersion parameters were not pooled (Fig. 4). The model fit in R with the new mark-recapture 

estimates was slightly more variable with pooled over-dispersion parameters (Fig. 11) than without (Fig. 

6), with a mean difference among solutions of 14,500 and maximum difference of 54,920 (Fig. 11). The 

model fit in ADMB with pooled over-dispersion parameters (Fig. 10) was on average less sensitive to 

starting values than with individual over-dispersion parameters on average when the new mark-recapture 

estimates were ignored (Fig. 5) (mean difference among solutions of 57,820 and maximum difference of 

223,900; Fig. 10). Additionally, the model in ADMB with pooled over-dispersion parameters was much 

more stable when the new mark-recapture estimates were incorporated (mean difference among 

solutions of 13,780 and maximum difference of 58,550; Fig. 12) than when each escapement index had a 

unique over-dispersion parameter (Fig. 7). Once again, while the model solutions in ADMB were more 

variable than in R, the best solutions in ADMB had lower negative log-likelihood values than in R, indicating 

better fits to the data (Fig. 8). A key finding is that sensitivity to starting values decreased the most when 

both over-dispersion parameters were pooled and the new mark-recapture data were used in the 

estimation. 

Because there still was evidence of multiple local minima when we assumed pooled over-dispersion 

parameters and used all the mark-recapture data (Fig. 8), we examined the sensitivity of the estimation 

model to inclusion of the harvest component in the calculation of the negative log-likelihood. We 

hypothesized that the catchability coefficients during the early years of the time series might be causing 

fitting problems, because there are no anchoring mark-recapture estimates and few escapement indices 

in that period to provide strong support for particular run estimates. When the harvest component of the 

model was removed from the calculation of the negative log-likelihood (i.e., "no-harvest model"), the 

model was much more stable across starting values in ADMB, though it still found two solutions (Figs. 8, 

13, 14). When the new mark-recapture estimates were not used and over-dispersion parameters were 

not pooled by type (Fig. 13), removing the harvest component of the likelihood reduced both the mean 

(23,780) and maximum (75,090) difference among model solutions over both the base and pooled 

estimation models. When new mark-recapture estimates were used (Fig. 14), the no-harvest model 

improved the stability over the base model, but not the pooled estimation model, with a mean difference 

among solutions of 20,370, and a maximum difference of 81,410. Further reducing parameterization by 

pooling over-dispersion parameters, the pooled/no-harvest model was stable whether or not the new 

mark-recapture estimates were included (though it found different solutions between those two 

scenarios; mean differences among solutions across starting values less than 0.3 and maximum 

differences less than 3 for both scenarios; Fig. 15, 16). Thus, another key finding is that the only model 
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formulation that did not produce multiple solutions was one where the harvest component was excluded 

and where over-dispersion parameters were pooled into weir and aerial survey projects. 

 

Starting-value Sensitivity in Estimation Model Using Simulated Data 

In simulated data sets, the no-harvest model was stable (i.e., gave a unique solution in terms of annual 

estimates of run sizes) across starting values, regardless of whether over-dispersion parameters were 

pooled. This stability held across scenarios with synchronous sub-population dynamics (Figs. 17, 18), 

asynchronous sub-population dynamics (Figs. 19, 20), and with (Figs. 17, 19) and without (Fig. 18, 20) 

observation error. Thus, given that asynchrony and observation errors exist in the Kuskokwim Chinook 

system, much of the instability in ADFG's original run-reconstruction model appears to derive from an 

overly complex harvest component of the model that is not well parameterized. 

The original estimation model tended to fit certain escapement indices more closely than others (Fig. 21), 

indicating that it was drawing the most information from these escapement data. The Kwethluk and 

Kogrukluk weir indices were very highly correlated (correlation > 0.95 across all estimation model 

structures) with their model estimated values, and Kogrukluk weir observations were also particularly 

correlated with the model estimated values. This pattern arose across all model structures 

(pooled/individual over-dispersion, with or without new mark-recapture estimates).  In general, the 

estimation model better fit observed weir indices than aerial survey indices. The Bear River aerial index 

[labeled as ‘a.ber’ in Fig. 21] was particularly uninformative, as model estimates had low correlations 

(correlation = ~0.2) with observed escapement values (Fig. 21). Pooling over-dispersion parameters by 

escapement index type slightly reduced the correlation between observed and estimated escapement 

indices. Additionally, the R and ADMB implementations of the model fit the aerial indices differently, with 

the ADMB implementations fitting the Kwethluk aerial survey very well (correlations > 0.7), while the R 

model fit this index with a correlation of approximately 0.6.  The R implementation also fit the Holokuk 

aerial survey (‘a.hlk’) more poorly (correlation ~ 0.2), while the ADMB implementation fit these 

observations better (correlation ~ 0.6). Interestingly, within each modeling implementation, the different 

model structures and data availability scenarios had little effect on the relative fits among streams (Fig. 

21). 

The original estimation model generally estimated higher over-dispersion parameters for weir indices 

than for aerial survey indices (Fig. 22). Higher over-dispersion parameters indicate less variation of 

observed escapement indices around the model predicted mean values, another measure of the amount 

of information the model derives from each index. This result is not surprising, as weir indices are much 

closer to census counts (though still only indices) than are aerial surveys, which are subject to variable 

flight conditions, viewing conditions, and non-linear bias across ranges of escapement (Jones et al. 1998). 

As such, weir indices should provide more consistent indicators of run size than aerial survey indices, 

though the value of information derived from weirs and aerial surveys should be quantified objectively, 

as discussed later in this report (see Discussion). 
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Simulation Model Experiments 

While individual estimates within model iterations can have high errors, in a qualitative sense, the 

estimation model performed reasonably well across a range of simulated scenarios.  The average relative 

error across model iterations in annual run estimates was always less than 15%, and typically less than 

10% across the scenarios examined. The relative performance of the model declined as the operating 

model violated more assumptions of the estimation model, but even in scenarios violating several 

assumptions, the model still performed fairly well, and management targets set from these estimates 

tended to be biologically conservative and thus appear to not present basin-wide conservation problems 

(see Management Implications of Estimation Errors below). 

It is important to note that the sensitivity of the estimation model to starting parameter values, as 

described above, was also seen in our simulation experiments. As such, we may have occasionally missed 

the global likelihood minima so that the errors and biases of true best model fits may be lower than what 

we present here. However, the relative impacts of violating different assumptions about the underlying 

population dynamics, or of different estimation model structures, should hold and provide information 

about which model assumptions are most important to address as future model development efforts 

progress.  

Accuracy and Bias 

During explorations of run-reconstruction model fits to simulated data, we identified a pattern wherein 

the model consistently overestimated total escapement and thus total run size. This issue stemmed from 

the pooling of harvest and effort data across the final three weeks of the data set. As the CPUE likelihood 

does not assume a linear relationship between catch and effort, this pooling across weeks in the original 

model is statistically inappropriate. Fitting the run-reconstruction model to actual data without pooling 

catch and effort across weeks resulted in lower run estimates for all years after 1990, regardless of which 

parameterization or mark-recapture data scenario we examined (Figs. 23, 24). The largest effect of the 

pooling of catch and effort data over the final three weeks of each season occurred when over-dispersion 

parameters were pooled, and when there were no new mark-recapture estimates included in the run-

reconstruction (Fig. 25). 

Asynchronous sub-population dynamics increased the normalized RMSE of annual run estimates across 

all scenarios and all estimation model structures when compared with synchronous cases (i.e., as assumed 

by the original ADFG estimation model; Fig. 26-28). This result was expected, because the estimation 

models all assume that each sub-population accounts for a constant proportion of the total run through 

time; asynchrony violates this assumption. Additionally, asynchronous sub-population dynamics 

increased the annual relative error in run estimates (from ~2.5 - 9% to ~4 - 15%; Fig. 29-34), as well as the 

bias across the time series (Fig. 35-40). 

The presence of regime shifts generally increased the normalized RMSE in run estimates, though the effect 

was strongest when sub-population dynamics were asynchronous (Fig. 27). Annual relative error in run 

estimates also increased in the presence of regime shifts (Fig. 31, 32, 37, 38), particularly with 

asynchronous dynamics among sub-populations. Pooling over-dispersion parameters reduced the 

impacts of regime shifts in asynchronous sub-populations on the bias in run estimates (Fig. 37, 38). Pooling 

had much less of an effect when the sub-populations were synchronous. 
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Non-linearity in aerial survey escapement indices, as opposed to linearity in the original model, increased 

the normalized RMSE in run estimates, and the effect was particularly strong when sub-population 

dynamics were asynchronous (Fig. 28). Non-linear biases in aerial surveys generally increased the bias 

across the time series (compare Figs. 39, 40), as well as increased the average relative error in each 

individual year (compare Figs. 33, 34). The bias and magnitude of annual run estimate relative error 

caused by non-linear biases in aerial surveys were greatly diminished when new mark recapture estimates 

were incorporated into the model and when over-dispersion parameters were pooled by index type. 

Incorporating information from recent mark-recapture experiments reduced the normalized RMSE across 

all scenarios and model structures compared to omitting those recent mark-recapture data (Fig. 26-28). 

The benefit was smaller when sub-population dynamics were asynchronous, due to all mark-recapture 

events being towards the end of the time-series. Early years of the time-series were still subject to higher 

errors when sub-population dynamics are asynchronous. The effect of including new mark-recapture 

estimates on the average annual relative error (Fig. 29-34) and consistency of bias (Fig. 35-40) was striking. 

Including the new mark-recapture estimates greatly reduced the relative error in the last half of the time 

series (from ~12-15% to ~4-5%). The relative error in scenarios with asynchronous sub-population 

dynamics and new mark-recapture data were less than the relative error in scenarios with perfect 

synchrony in sub-population dynamic without new mark-recapture. Without these new mark-recapture 

estimates, relative error quickly increased after the initial set of mark-recapture estimates. These results 

highlight the importance of periodic mark-recapture studies for reducing relative error in run size 

estimates in the future, though they are not likely to improve the estimation accuracy in the early part of 

the time-series. 

Removing the harvest component from the estimation model reduced the normalized RMSE of annual 

run estimates compared to the original estimation model (Fig. 26). However, removal of the harvest 

component tended to the average magnitude of relative error in annual estimates in the early portion of 

the time series (Fig. 29, 30), when there were limited escapement counts. Under these situations the 

harvest component likely provided much of the information used to estimate each annual run value. This 

result is unexpected and should be explored further. 

While the model estimation errors were generally small in Figs. 29-34, the confidence intervals on those 

estimates did not always include the true run size value. The proportion of simulations in which model 

estimates included the true values was influenced by the biological and management scenario examined 

(Fig. 41). The presence of asynchronous sub-population dynamics generally reduced the coverage 

probability of model estimates relative to scenarios with synchronous sub-population dynamics. If the 

population dynamics were characterized by asynchrony among stock components, the coverage 

probability tended to be only about 60%. 

The presence of regime shifts slightly reduced the coverage of model estimates when sub-population 

dynamics were asynchronous, especially in the early years, but had either little or the reverse impact on 

coverage when sub-population dynamics were perfectly synchronous. The incorporation of recent mark-

recapture data modestly increased the coverage of model estimates for scenarios with asynchronous sub-

population dynamics, but had no effect on coverage for scenarios with synchronous sub-population 

dynamics. Coverage values were generally highest in the earliest years with few escapement indices 

available, as these estimates had greater uncertainty and wider confidence intervals. 
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Management Implications of Estimation Errors 

The consequences of inaccuracy and bias produced by the estimation model results depend on how those 

results are used for management of Kuskokwim River Chinook salmon. Because the run-reconstructions 

are used to estimate spawner-recruit relationships that inform the setting of escapement goals, we 

examined how the accuracy and bias issues identified above can affect management reference points (i.e., 

escapement goal targets). First, we examined whether the abundance estimates derived from the run-

reconstruction model produced spawner-recruit relationships that indicated over-compensatory 

dynamics in the system (as is suggested by the existing data on Chinook salmon in the Kuskokwim River). 

We then examined the effect of assuming over-compensation on management reference targets by 

estimating both escapement goals and harvest rates that would produce MSY and comparing them to 

those values that produced MSY when populations were simulated forward in time across the range of 

potential harvest rates.  

Catalano (2012) found that appearance of strong overcompensation in recruitment dynamics in 

Kuskokwim River Chinook salmon was anomalous when compared with the eleven other Alaska Chinook 

salmon stocks included in his analysis where there was no compelling support for overcompensation in 

population dynamics.  Because productivity regime shifts have been suggested as a potential reason for 

the apparent strong over-compensation detected in the Kuskokwim River Chinook salmon population, we 

examined the effect of regime shifts of different strengths and durations on the likelihood of detecting 

overcompensation and the subsequent effects on management targets. We ran these scenarios with both 

synchronous and asynchronous sub-population dynamics, though all were produced by Beverton-Holt 

production functions. We assumed that all mark-recapture data were available for all scenarios. 

The Shepherd spawner-recruitment model fit to the data from brood tables derived from the run-

reconstruction model suggest that the likelihood of detecting over-compensatory dynamics (i.e., a Ricker 

shaped spawner-recruit relationship rather than a Beverton-Holt shaped relationship, as indicated by 

Shepherd’s β > 1) was affected by the presence and characteristics of regime shifts acting upon the 

population. Stronger regime shifts produced the appearance of stronger overcompensation in 

recruitment dynamics (Fig. 42). Further, the duration of regimes played a major role in whether over-

compensatory dynamics were detected; strong overcompensation was detected more consistently when 

regime duration was roughly equal to the longevity of Chinook salmon (4 to 8 years). The effects of regime 

strength and duration were present regardless of whether sub-population dynamics were synchronous.  

Asynchronous dynamics generally produced larger estimates of over-compensation strength (i.e., 

Shepherd’s β) even if population dynamics were produced via Beverton-Holt recruitment. 

We found that Ricker spawner-recruit relationships fit to the output from the run-reconstruction model 

generally identify Smsy values larger than those that would produce MSY based on long-term simulations, 

regardless of whether sub-population dynamics were synchronous or asynchronous (Fig. 44). While 

estimates of Smsy are high for both synchronous and asynchronous dynamics, misspecifications are smaller 

on average when dynamics are asynchronous. Similarly, estimates of the harvest rate that would produce 

MSY (as derived from the Ricker spawner-recruit relationship fit to estimated run sizes) underestimated 

the optimal harvest rate (Fig. 43). Thus, the presence and characteristics of periodic productivity regime 

shifts affected estimates of management targets in our simulation models. Estimation errors generally 

increased with regime shift strength and were strongest when the duration of each regime state roughly 

matched the average longevity of individuals in the populations being simulated. 
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From a conservation perspective, misspecifying the production dynamics (as driven by Ricker dynamics 

rather than by Beverton-Holt dynamics) in the stock-recruitment analysis produces management 

reference points that result in biologically conservative harvest rates. That is, more Chinook salmon are 

allowed to spawn than would produce the maximum sustainable yield at equilibrium. Such an approach 

will reduce the risk of overharvesting (or causing the extinction of) sub-stocks that are less abundant or 

productive than other sub-stocks at any point in time. Such contrasts in the productivity of sub-stocks 

should be expected in the Kuskokwim, given the existing data suggesting little coherence in the dynamics 

of sub-stocks in the system, and the prevalence of such biocomplexity in other salmon ecosystems. Even 

though the Kuskokwim River aggregate population has apparently supported high harvest rates while at 

low abundance in the past before rebounding to high abundance, small populations are inherently at 

greater conservation risks than large populations. Stochastic mortality events, Allee effects, and other 

depensatory mortality processes could all result in reduced productivity at low abundances. Thus, using a 

Ricker relationship to set management targets is a less risky approach for conserving stock diversity even 

if the underlying dynamics have no over-compensation in them. 

From the perspective of harvest potential, using a Ricker model for management leads to lower harvest 

rates than those that would produce the maximum sustainable yield. These results suggest that this 

management approach could be reducing harvest opportunities, if the population is truly driven by 

Beverton-Holt dynamics subject to productivity regime shifts. For subsistence fishing, such overestimation 

of the optimal escapement goal increases the risk of unnecessary restrictions on harvest which may have 

important social consequences for communities reliant on Chinook salmon as a nutritional and cultural 

resource.  

The trade-offs between providing harvest opportunity and conserving stock diversity under different 

management strategies and different levels (and types) of uncertainty should be rigorously explored to 

inform management about the most effective way to balance multiple objectives in a system with high 

levels of uncertainty concerning the dynamics of the ecosystem. Such management strategy evaluations 

are increasingly important as resources for research and monitoring become scarcer, and as the 

ecosystem is subjected to new perturbations such as those caused by ongoing climate change and by the 

poorly understood erosion of the age-structure of the population that has been observed in recent 

decades. 

 

Comparison of Original and Revised Model on Stock-Recruit Analysis 

We examined the relationship between spawning stock and recruitment inferred from output from the 

original run-reconstruction model compared to a revised model that eliminated some of the technical 

problems we identified with its structure. In particular, the revised model included log-normally 

distributed errors on data collected from weirs and aerial surveys, the variances were pooled for each of 

these survey types, and the harvest model was also reformulated. The harvest model was changed to an 

annual passage adjusted CPUE model, and the likelihood was changed to a log-normal likelihood with 

common variance across years and gear types according to:  
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where Gj is the gear type g fished in week j, y indicates year, H indicates fisheries harvest in numbers of 

fish, F indicates fishery effort, p is the proportion of the total run available to the fishery during the weeks 

the fishery was open, q is the catchability coefficient, 𝑁̂𝑦 is the estimated total abundance of Chinook 

salmon in year y, and cvq is the estimated coefficient of variation for the catchability coefficient. For each 

year and gear type (i.e., mesh size), catch-per-unit-effort was added across weeks and the proportion of 

the total run that was available during fishing periods was calculated. The summed CPUE was divided by 

the proportion of total run available during the open fishing periods and compared to the predicted CPUE 

given by the product of the total run and the catchability coefficient for the specific gear type.  

These changes to the original model seemed to remedy the model instability problems described earlier 

in the report such that the model converged on a single solution independent of starting values. We then 

compared the output from the original model using the old lower river expansions, and the new lower 

river expansions (ADFG, unpublished data) to this revised model (using the new lower river expansions). 

While the revised model changed the estimates of recruitment produced from individual brood years, 

much of the underlying character of this relationship remained unchanged (Figure 45). In particular, the 

revised run-reconstruction model output still suggests a ‘Ricker’ stock-recruit relationship with 

considerable overcompensation (i.e., very high escapements lead to reduced recruitment), though the 

revised model output suggests weaker overcompensation than the original model. In terms of establishing 

management reference points, output from each of these three models produced similar estimates of the 

escapement that would produce maximum sustainable yield (Smsy) of about 66,000 – 73,000 fish (Table 2).  

The revised model estimate of 72,000 with new expansions is slightly higher than the estimate produced 

from the original model with new expansions (66,000 fish). The range of escapements that would produce 

at least 90% of MSY spans from about 42,000 to 105,000 for all three models (Table 2, Figure 45)1. Thus, 

the revised model (like the original model) leads to estimates of Smsy comparable to the lowest 

escapements observed in the system. Whether such low escapements protect stock diversity and 

maximize harvest potential from the system remains highly uncertain. The principal difference between 

the revised model and the original model (both with the old expansion factors) is that the stock is not as 

productive as suggested by the original model. In particular, MSY for the revised model is estimated to be 

                                                           
1 Note: these MSY based escapement ranges are for the purpose of model review and diagnostics and are not 
being recommended for adoption as a formal escapement goal range. 
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about 20% lower than for the original model, although these are both suggested to occur at similar 

escapements. 

 

Table 2.  Comparison of the spawner abundance (Smsy) expected to produce maximum sustainable yield 

(MSY) for three different run-reconstruction model scenarios for Kuskokwim River Chinook salmon. 

Estimates for the original model are given with old or new lower river expansions of the mark-recapture 

estimates. Estimates from the revised model are only given using the new expansion factors. The upper 

and lower bounds for the range of escapements expected to produce at least 90% of MSY are also given 

for each of the model scenarios.  

  Smsy 
Spawners Producing 

90% of MSY 

Model Scenario   Low High 

Revised Model, 
New Expansions 

71,911 46,138 102,335 

Original Model, 
New Expansions 

66,335 42,373 94,829 

Original Model, 
Old Expansions 

73,431 46,770 105,291 

 

 

 

As described in the sections above, these analyses of the stock-recruitment relationship assume that the 

relationship between the environment and the productivity of the stock is not changing in any systematic 

way through time (other than year-to-year variation in productivity). Detailed analyses of this and other 

Pacific salmon stocks (e.g., Adkison et al. 1996; Peterman et al. 1998, 2003; Pyper et al. 2005; Dorner et 

al. 2008, 2018; Ohlberger et al. 2016; Peterman and Dorner 2012; Kilduff et al. 2014; Malick and Cox 2016) 

suggest several reasons for expecting that this relationship is not stationary through time. Climate-driven 

changes in the environment through such phenomena as the Pacific Decadal Oscillation (PDO) and the 

North Pacific Gyre Oscillation (NPGO) may cause low-frequency changes in stock productivity that affect 

the relationship between stock and recruitment. Evidence of long-term changes in the age structure of 

Kuskokwim River Chinook salmon, characterized by the disappearance of the oldest and largest fish from 

the population (Lewis et al 2015, Ohlberger et al. 2018), suggests that other poorly understood shifts in 

the ecology of Chinook salmon, potentially combined with selective harvest, may be producing these 

trends. The consequences of these changes in demographic structure for the quality and egg mass of 

spawners (and therefore the stock productivity) are largely unknown and are currently being investigated 

by a separate AYK SSI Chinook Salmon Escapement Quality Expert Panel. However, the direction and 

magnitude of change is cause for concern, as demographic shifts driving declines in escapement quality 

across the time-series can introduce bias into run-reconstruction and spawner-recruit model results. 

Therefore, we encourage vigilance in watching for changes in the productivity of the Kuskokwim River 

Chinook stocks by maintaining appropriate fishery and escapement monitoring. Though it is beyond the 
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scope of this model review, we recommend re-evaluation of the stock-recruit relationship in the near 

future (and routinely thereafter) with explicit consideration for the potential effect of declining 

escapement quality over the time series (e.g., Jones et al (2018) recent analysis of the effect of changes 

in escapement quality on spawner-recruit model for Canadian-origin Chinook Salmon in the Yukon River).  

Further, given the increasing recognition of the prevalence of stock structure within the Kuskokwim River 

Chinook salmon stock complex, it is critical to assess whether the current stock-recruitment analysis 

(which assumes a single homogeneous stock) produces management reference points that provide robust 

measures for protecting sub-stocks that may experience periods of low productivity but are harvested 

simultaneously with larger or more productive stocks. Thus, we also recommend more detailed 

assessment of the stock-recruit dynamics of the overall system with an eye towards understanding (1) the 

consequences of different harvest strategies for maintaining biocomplexity within the stock complex, and 

(2) the long-term consequences for sustainability of the stocks under future unknown environmental 

shifts.  

 

Recommendations 

Based on our review and analysis of the original stock-assessment models used by ADFG for managing 

Chinook salmon in the Kuskokwim River, we offer the follow list of recommendations for improving the 

performance of these models and, thus, scientifically-based management of this invaluable resource. 

Run-Reconstruction Model Structure 

1) Pooling the over-dispersion parameters in the estimation model reduced the normalized RMSE and 

bias in run estimates. Additionally, this improved the model stability across starting parameters, 

particularly when paired with mark-recapture estimates across multiple periods. Pooling the over-

dispersion parameters is easily implemented and should improve accuracy and reduce bias. However, 

pooling over-dispersion parameters alone was not sufficient to fully correct the estimation problem 

in which there were multiple solutions. 

 

2) The original model assumes that the errors on weir and aerial survey data are distributed according 

to a negative binomial distribution. We recommend changing the model to more appropriately 

assume that these errors are log-normally distributed. While we have not included detailed analysis 

in this report, analysis of simulated data showed that changing the model to include this error 

structure improved its stability, albeit modestly. We can provide a more thorough summary of results 

upon request, but have elected to not include them in this report. 

 

3) Removing the harvest component of the likelihood from the estimation model greatly improved 

model stability across starting values, which was unexpected. The lack of estimates of total in-river 

abundance, particularly in the early portion of the time-series, coupled with asynchronous dynamics 

among sub-populations, generated multiple local minima on the likelihood surface, leading to critical 

minimization problems. However, removing the harvest component of the likelihood also increased 

the bias in estimates during the early part of the time-series (as shown in simulation experiments), 

because run-estimates in early time-series no longer derived any information from the harvest data 

and relied solely on relatively few escapement indices. Thus, there are trade-offs between model 
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stability and estimation bias when determining the value of retaining the harvest component of the 

likelihood. The harvest component of the original model appears to be either misspecified or overly 

complex, and we recommend that this part of the model be scrutinized and alternative formulations 

considered as a way to improve model performance. 

 

4) The original estimation model is highly sensitive to parameter starting values, particularly when fit in 

ADMB (though ADMB found the solutions with the best fit by negative log-likelihood). Even the 

revised model structures are sensitive to starting values, though less so than the original model. As 

such, the model should be fit across a range of starting values for parameters to explore the likelihood 

surface. Negative log-likelihoods of the different solutions should be compared across the range of 

solutions to ensure the best possible fit is being found. As described above, this poor convergence 

behavior suggests that the model is overly complex given the information content of the data it is fit 

to. 

 

5) Any new model should be thoroughly tested using simulation experiments. All models are simplified 

representations of reality and, thus, require many assumptions about the nature of real-world 

dynamics. The potential impacts of violating these assumptions to management activities should be 

thoroughly investigated using simulation where the true underlying state of the system is known and 

biases or inaccuracies arising from assumptions in the estimation model can be determined.  

 

Data Collection 

1) Mark-recapture estimates of river-wide abundance are critical for tracking long-term changes in the 

stock, especially given that asynchrony and regime shifts are involved in the production dynamics of 

Chinook salmon in the Kuskokwim system. These are the only sources of information that anchor the 

magnitude of annual runs, allowing the estimation of all other parameters in the model. At least some 

level of sub-population asynchrony should be expected among the Chinook salmon populations of the 

Kuskokwim River, and without future mark-recapture estimates, run estimation errors will become 

continually less accurate and more biased as the relative production of different populations changes. 

Periodic mark-recapture data are extremely valuable for capturing the variation in population 

productivity that can occur in the Kuskokwim River. These data need not be collected each year, but 

if data are collected periodically, the model will be able to adjust its predictions around the time-

varying productivity of individual populations. Thus, while funding for such projects may be limited at 

present, capitalizing on periodic funding opportunities that may arise is likely to be highly valuable.   

 

2) How often mark-recapture programs should be conducted should be determined using a formal, 

quantitative value-of-information (VOI) approach based on simulations similar to those used by this 

panel but with added economic variables. Such VOI analyses will determine how the large expenses 

of mark-recapture programs compare with the value of the additional catches (and/or other benefits 

not quantifiable in dollar terms) taken in future years, and how often such programs are warranted 

for reducing model uncertainties. Link and Peterman (1998) conducted this type of VOI analysis to 

determine whether a fish wheel for sockeye salmon on the Nass River in British Columbia was 

worthwhile; it was. This same VOI approach could also be used to determine the value of various weir 

and aerial survey programs, which are at risk of becoming discontinued due to budget constraints. 



Independent Expert Panel Review  Page 36 

 

Discontinuing such assessment programs without an objective assessment of the costs and benefits 

(i.e., in being able to properly assess the stock status) would be careless.   

 

3) More explicit examination of the trade-offs between maintaining a collection of weirs and aerial 

surveys versus investing research funding in whole-system mark-recapture estimates of abundance 

should be done to optimize future research funding investments. We suspect that maintaining a 

network of weirs and aerial surveys, or investment in other ways to estimate sub-stock dynamics (e.g., 

through otolith microchemistry or genetic sampling) across the watershed will be critical for 

producing reliable abundance estimates in the future. In situations where there is considerable 

asynchrony among sub-stock dynamics, the value of any individual weir is likely to increase markedly 

as the number of sites monitored declines. However, these trade-offs have not yet been quantified 

and should be made a high priority for future research. 

 

4) Systematic and non-linear bias (underestimation of abundance at high actual abundance) is well-

documented in aerial surveys of spawning salmon. As the number of spawners in a system increases, 

the magnitude of the bias increases. This creates a problem with using aerial indices in an estimation 

model that assumes constant proportionality between indices and spawner abundance. This situation 

means that, in comparison, the escapement data provided by the weir projects are particularly 

valuable during years when no mark-recapture studies are conducted. The original estimation model 

generally fits higher over-dispersion parameters for weir projects than aerial surveys, indicating lower 

variance of observed weir escapement relative to the model's expected weir escapement. When 

decisions about funding of future monitoring programs are being made, the presumed greater value 

of information from weir projects relative to aerial surveys should be considered. Here again, formal 

value-of-information analyses would be extremely informative for those funding decisions. 

 

5) Recent analyses of patterns in productivity of various Chinook salmon stocks suggest that they have 

become more coherent (positively correlated) in recent years (Kilduff et al. 2014; Dorner et al. 2018), 

as has been observed for sockeye salmon (Peterman and Dorner 2012) and pink and chum salmon 

(Malick and Cox 2016). Such changes in the degree of synchrony among stock components is one 

expression of non-stationarity in population dynamics, which may further affect performance of the 

run-reconstruction model if Kuskokwim Chinook salmon are characterized by similar changes in 

population dynamics within the stock.  A simulation approach similar to what we have used here could 

be used to explore the consequences of such changes in the ecosystem, though we anticipate that 

problems arising from changes in synchrony will probably be minor compared to changes driven by 

system-wide regime shifts in productivity, or to situations where data are sparse for estimating model 

parameters. 

 

Stock-Recruit Analysis 

1) The relationship between spawning stock and subsequent recruitment forms the biological basis for 

estimating the escapement that will maximize sustained production from salmon-producing 

ecosystems. In simplified form, such as that currently used to assess the productivity of Chinook 

salmon in the Kuskokwim River, it is assumed that the per capita reproductive potential of the 

population has remained constant over the course of the observed time series. However, given the 
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widespread observation that the size- and age-structure of the population has shifted towards smaller 

and younger individuals through time, this assumption is clearly tenuous, as the escapement quality 

may have deteriorated through time in response to currently unknown reasons. However, given the 

uncertainties in the stock assessment process for Kuskokwim Chinook salmon, it remains unclear 

whether the productivity of the stock and the management reference points derived from the stock 

assessments are changing in response to shifting age- and size-structure. We recommend re-

evaluation of the stock-recruit relationship with a) explicit consideration for the potential effects of 

declining escapement quality (i.e., lower per capita reproductive potential) over the time series, and 

b) evaluation of potential harvest strategies focused on maintaining the largest, oldest segment of the 

population that are disproportionally female, as has been applied to the Kenai River Chinook salmon 

stocks in recent years (Fleischman and Reimer 2017).   

 

2) Current stock assessments of Kuskokwim Chinook salmon assume that it is composed of a 

homogeneous stock distributed across the watershed, with each tributary contributing a constant 

proportion of the total run at any point in time. What is more likely, given accumulating knowledge in 

this and other systems, is that it is actually a stock complex composed of many populations (sub-

stocks) that show some degree of demographic independence. What is not known is how the current 

management approach of assuming a single large stock for the purpose of setting allowable harvest 

rates risks eroding the diversity of populations that compose the stock complex. Harvest rates 

established by assuming a homogeneous stock run the risk of overexploiting unproductive sub-stocks. 

Thus, we recommend more detailed assessment of the stock-recruit dynamics of the overall system 

to assess: a) the consequences of different harvest strategies for maintaining the integrity of sub-

stocks (i.e., the biocomplexity) across the entire watershed, and 2) the long-term consequences for 

sustainability of the stocks under future known environmental conditions. Trade-offs between risk to 

biocomplexity and harvest opportunity, as a function of the escapement goal, should be quantified 

and used in establishing and adapting escapement goals as new observations about stock dynamics 

accumulate. 

 

3) The stock assessment process for Chinook salmon stocks in the Kuskokwim River remains challenging 

owing to substantial uncertainties in the data and in the ecological processes that generate variation 

in abundance. Formal incorporation of these uncertainties into the assessment process has improved 

through the development of a state-space approach for estimating the stock-recruitment 

relationship. However, whether uncertainties in the run-reconstruction analyses are properly 

integrated into the stock-recruitment analysis (that is used to inform management reference points) 

is not clear at present. The current practice of doubling the CV of the run-reconstruction estimates of 

abundance as input to the state-space analysis of stock-and-recruitment is arbitrary and may have 

unintended consequences on the interpretation of the biological status of the stocks. We recommend 

more formal exploration of the run-reconstruction model, using a simulation approach like we have 

adopted in this report, to develop a better understanding of the true uncertainties of the run-

reconstruction estimates of annual abundance.  
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Figure 1. Example sub-population dynamics generated by the operating model under conditions with 

perfect synchrony among sub-populations (top), synchrony among sub-stocks but with regime shifts in 

productivity (top middle), conditions with asynchronous sub-population dynamics (bottom middle), and 

conditions with asynchrony among sub-populations and regime shifts in productivity (bottom). Each line 

represents the run size to a single sub-population.  
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Figure 2. Run-reconstructions for Chinook salmon in the Kuskokwim River from the original model fit to 

observed data under different model structures (individual "Ind" or pooled over-dispersion parameters) 

and with different amounts of mark-recapture (MR) data available (no new mark recapture estimates, all 

new mark-recapture estimates, or new mark-recapture estimates but without the 2017 estimate). Starting 

values for these simulations are held constant, at the values currently used by ADFG, across all scenarios 

considered here. 
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Figure 3. Changes in annual run-reconstruction estimates when switching from the original model 

(individual ("Ind") over-dispersion parameters and no new mark-recapture (MR) estimates available) to 

different model structures and data scenarios. Starting values for these simulations were held constant 

across all scenarios considered here at the values currently used by ADFG. 
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Figure 4. Run estimates across a range of starting values from the original ADFG R model implemented in 

R without new mark-recapture estimates. Black lines indicate stacked grey lines, representing repeated 

model convergence on some values. The red line indicates the range in model estimates for annual run 

size. The horizontal solid black line represents the mean of the estimate range, while the dashed 

horizontal line shows the maximum range across simulations. The dots with vertical bars are the means 

and 95% confidence intervals of the mark-recapture estimates. 
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Figure 5. As in Fig. 4, but with the original run-reconstruction model implemented in ADMB.  
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Figure 6. As in Fig. 4, but with new mark-recapture estimates available (2014-2016). 
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Figure 7. As in Fig. 5, but with new mark-recapture estimates available (2014-2016). 
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Figure 8. Negative log-likelihood values of original run-reconstruction model solutions across a range of 

starting values for annual run size. The top row show results for models fit in R, while the bottom two 

rows show results of models fit in ADMB. The top two rows show the results of models with the harvest 

component of the likelihood included, while the bottom row shows models fit without the harvest 

component of the likelihood. The left two panels are model fits with individual over-dispersion parameters 

for each escapement index, while the right two panels show model fits with over-dispersion parameters 

pooled by escapement index type. The first and third columns show model fits when no new mark-

recapture data are available, while the second and fourth columns show model fits with new mark 

recapture data available. 
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Figure 9. As in Fig. 4, but with over-dispersion parameters pooled by escapement index type 

(weir/aerial). 
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Figure 10. As in Fig. 5, but with over-dispersion parameters pooled by escapement index type 

(weir/aerial). 
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Figure 11. As in Fig. 6, but with over-dispersion parameters pooled by escapement index type 

(weir/aerial). 
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Figure 12. As in Fig. 7, but with over-dispersion parameters pooled by escapement index type 

(weir/aerial). 
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Figure 13. As in Fig. 5, but removing the harvest component from the likelihood function. 
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Figure 14. As in Fig. 7, but removing the harvest component from the likelihood function. 
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Figure 15. As in Fig. 10, but removing the harvest component from the likelihood function. 
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Figure 16. As in Fig. 12, but removing the harvest component from the likelihood function. 
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Figure 17. Original R model in ADMB fit to simulated data without the harvest component of the 

likelihood. This scenario had new mark-recapture estimates incorporated, perfect synchrony among sub-

stocks, and no observation error. Black points represent true run size values in the simulation model. 

Points with error bars represent mark-recapture estimates. The thick black line is composed of 100 

individual model fits across a range of starting values. 
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Figure 18. As in Fig. 17, but with observation error in the aerial survey and weir indices. 
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Figure 19. As in Fig. 17, but with asynchronous sub-population dynamics. 
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Figure 20. As in Fig. 18, but with asynchronous sub-population dynamics. 
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Figure 21. Correlations between observed escapement indices and original model predicted escapement 

indices. Semi-transparent grey lines indicate weir indices and semi-transparent blue lines indicate aerial 

survey indices. The top row show results for models fit in R, while the bottom two rows show results of 

models fit in ADMB. The top two rows show the results of models with the harvest component of the 

likelihood included, while the bottom row shows models fit without the harvest component of the 

likelihood. The left two panels are model fits with individual over-dispersion parameters for each 

escapement index, while the right two panels show model fits with over-dispersion parameters pooled by 

escapement index type. The first and third columns show model fits when no new mark-recapture data 

are available, while the second and fourth columns show model fits with new mark recapture data 

available. X-axis labels indicate the abbreviated escapement projects, with those beginning with a “w.” 

being weir projects, and those beginning with an “a.” being aerial surveys.  



 
Independent Peer Review Panel  Page 63 

 

 

 

 

 

Figure 22. Model estimates of escapement-index over-dispersion parameters across different model 

structures and levels of data availability. Boxes indicate over-dispersion parameters that were estimated 

for weir (grey) and aerial survey (blue) indices. The top row shows results for models fit in R, while the 

bottom two rows show results of models fit in ADMB. The top two rows show the results of models with 

the harvest component of the likelihood included, while the bottom row shows models fit without the 

harvest component of the likelihood. The left two columns of panels are model fits with individual over-

dispersion parameters for each escapement index (with those beginning with a “w.” being weir projects, 

and those beginning with an “a.” being aerial surveys), while the right two columns of panels show model 

fits with over-dispersion parameters pooled by escapement index type. The first and third columns show 

model fits when no new mark-recapture data are available, while the second and fourth columns show 

model fits with new mark recapture data available. Boxes represent the interquartile range of parameter 

estimates, thick line inside of box indicates the median estimate, whiskers extend to the furthest estimate 

within 1.5x the IQR of the median, and points represent all estimates that are more than 1.5x the IQR less 

or greater than the median estimate. 
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Figure 23. Effects of pooling catch and effort data across the final three weeks of season on run-

reconstruction estimates. Black line is the base model, while blue lines are the base model with new mark-

recapture estimates included. The orange lines are fits when catch and effort are not pooled across the 

final three weeks of the season. All of these models have individual over-dispersion parameters for each 

escapement index. 
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Figure 24. As in Fig. 23, but all of these models have over-dispersion parameters pooled by escapement 

index type (weir/aerial survey). 
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Figure 25. Change in run-reconstruction estimates from no longer pooling catch and effort data across the 

final three weeks of the season. Each model structure in this figure is compared to the same model 

structure, but with pooled catch and effort. 
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Figure 26. Boxplots of normalized RMSE for Kuskokwim Run-reconstruction model fits to simulated data 

under different biological scenarios and model structures. The boxes show the interquartile range (IQR) 

and the whiskers extend to the most extreme value within the 95 % simulation interval. The colors 

represent scenarios with synchronous (orange) and asynchronous (blue) sub-stock dynamics. Column 

labels describe whether or not new mark-recapture estimates are available when fitting the model, 

whether or not escapement over-dispersion parameters are pooled in the run-reconstruction model, and 

whether or not the harvest likelihood is included in the run-reconstruction model (the latter assumption 

also indicated by the grey background). 
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Figure 27. Boxplots of normalized RMSE for Kuskokwim Run-reconstruction model fits to simulated data 

under different biological scenarios and model structures. The colors represent scenarios with (blue) and 

without (orange) regime shifts in population productivity. Column labels describe whether or not sub-

populations demonstrate perfect synchrony or asynchronous dynamics, whether or not new mark-

recapture estimates are available when fitting the model, and whether or not escapement over-dispersion 

parameters are pooled in the run-reconstruction model (also indicated by the grey background). 
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Figure 28. Boxplots of normalized RMSE for Kuskokwim Run-reconstruction model fits to simulated data 

under different biological scenarios and model structures. The colors represent scenarios with 

synchronous (orange) and asynchronous (blue) sub-stock dynamics. Column labels describe whether or 

not new mark-recapture estimates are available when fitting the model, whether or not escapement over-

dispersion parameters are pooled in the run-reconstruction model, and whether or not aerial escapement 

indices are systematically biased because of the assumption of linearity (also indicated by the grey 

background). 
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Figure 29. Absolute values of relative error through time in run-reconstruction estimates for simulated 

time-series where the harvest component of the likelihood was included. Solid lines represent those in 

which the new mark-recapture estimates are not available for the run-reconstruction model. Dashed lines 

represent scenarios in which the new mark-recapture estimates are available for the run-reconstruction 

model. Lines in orange shades represent scenarios where the underlying sub-populations are perfectly 

synchronous, while blue shaded lines represent those with asynchronous sub-populations. Darker shades 

of each color represent scenarios with pooled over-dispersion parameters in the run-reconstruction 

model, while lighter shades represent scenarios with unique over-dispersion parameters for each 

escapement index. Numbers above x-axis indicate the number of escapement indices available each year. 
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Figure 30. As for Fig. 29, except that the harvest component of the likelihood is excluded. 
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Figure 31. Absolute values of bias through time in run-reconstruction estimates for simulated time-series 

where the estimation model had unique over-dispersion parameters for each escapement index. Solid 

lines represent those in which the sub-population dynamics are perfectly synchronous. Dashed lines 

represent scenarios in which the sub-population dynamics are asynchronous. Lines in orange shades 

represent scenarios where no regime shifts occur, while blue shaded lines represent those with regime 

shifts. Darker shades of each color represent scenarios with new mark-recapture estimates available to 

the run reconstruction model, while lighter shades represent scenarios without new mark-recapture 

estimates being available. Numbers above x-axis indicate the number of escapement indices available 

each year. 

 

 

 

 

 



 
Independent Peer Review Panel  Page 73 

 

 

 

 

Figure 32. As in Fig. 31, but with over-dispersion parameters pooled by escapement index type 

(weir/aerial survey). 
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Figure 33. Absolute values of bias through time in run-reconstruction estimates for simulated time-series 

where there is no systematic bias in aerial survey indices. Solid lines represent those in which the new 

mark-recapture estimates are not available for the run-reconstruction model. Dashed lines represent 

scenarios in which the new mark-recapture estimates are available for the run-reconstruction model. 

Lines in orange shades represent scenarios where the underlying sub-populations demonstrate perfectly 

synchronous dynamics, while blue shaded lines represent those with asynchronous sub-populations. 

Darker shades of each color represent scenarios with pooled over-dispersion parameters in the run-

reconstruction model, while lighter shades represent scenarios with unique over-dispersion parameters 

for each escapement index. Numbers above x-axis indicate the number of escapement indices available 

each year. 
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Figure 34. As in Fig. 33, but with non-linear bias in aerial survey indices. 
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Figure 35. Density plots of the absolute value of the average time-series bias across all iterations for 

different scenarios for both the operating model and estimation model, where the harvest component of 

the likelihood is included in the estimation model. Higher values indicate more systematic bias across an 

entire time-series. Solid lines represent those in which the new mark-recapture estimates are not 

available for the run-reconstruction model. Dashed lines represent scenarios in which the new mark-

recapture estimates are available for the run-reconstruction model. Lines in orange shades represent 

scenarios where the underlying sub-populations demonstrate perfectly synchronous dynamics, while blue 

shaded lines represent those with asynchronous sub-populations. Darker shades of each color represent 

scenarios with pooled over-dispersion parameters in the run-reconstruction model, while lighter shades 

represent scenarios with unique over-dispersion parameters for each escapement index. 
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Figure 36. As in Fig. 35, but without the harvest component of the likelihood. 
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Figure 37. Density plots of the absolute value of the average time-series bias across all iterations for 

different scenarios for both the operating model and estimation model, where the over-dispersion 

parameters in the estimation model were unique for each escapement index. Higher values indicate more 

systematic bias across an entire time-series. Solid lines represent those in which the sub-population 

dynamics are perfectly synchronous. Dashed lines represent scenarios in which the sub-population 

dynamics are asynchronous. Lines in orange shades represent scenarios where no regime shifts occur, 

while blue shaded lines represent those with regime shifts. Darker shades of each color represent 

scenarios with new mark-recapture estimates available to the run-reconstruction model, while lighter 

shades represent scenarios without new mark-recapture estimates being available. 

 

 

 

 

 



 
Independent Peer Review Panel  Page 79 

 

 

 

Figure 38. As in Fig. 37, but with over-dispersion parameters pooled by escapement index type 

(weir/aerial survey). 
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Figure 39. Density plots of the absolute value of the average time-series bias across all iterations for 

different scenarios for both the operating model and estimation model, where there is no systematic bias 

in aerial survey indices. Higher values indicate more systematic bias across an entire time-series. Solid 

lines represent those in which the new mark-recapture estimates are not available for the run-

reconstruction model. Dashed lines represent scenarios in which the new mark-recapture estimates are 

available for the run-reconstruction model. Lines in orange shades represent scenarios where the 

underlying sub-populations demonstrate perfectly synchronous dynamics, while blue shaded lines 

represent those with asynchronous sub-populations. Darker shades of each color represent scenarios with 

pooled over-dispersion parameters in the run-reconstruction model, while lighter shades represent 

scenarios with unique over-dispersion parameters for each escapement index. 
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Figure 40. As in Fig. 39, but with non-linear bias in aerial survey indices. 
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Figure 41. The proportion of simulations in which the true run-size value was within the 95% confidence 

interval of the model estimated run-size across time under different scenarios. Blue (red) lines indicate 

scenarios with synchronous (asynchronous) sub-population dynamics. Solid (dashed) lines indicate 

scenarios without (with)the new mark-recapture estimates available. Thin (thick) lines indicate scenarios 

without (with) regime shifts impacting the underlying population dynamics. The numbers at the top 

indicate the number of escapement indices available to the model in that year. 
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Figure 42. Median estimates of the Shepherd’s β parameter, when the Shepherd spawner-recruit 

relationship is fit to estimates from the run-reconstruction model under different scenarios of productivity 

regime and sub-population synchrony. Red values indicate estimates where overcompensatory dynamics 

were detected, while white and blue values indicate Beverton-Holt compensation or weak compensation 

being detected. Values of regime strength indicate how many times greater the recruits-per-spawner at 

the origin is during high productivity periods is than during low productivity periods (e.g., 4 is 4-fold above 

the low productivity recruits-per-spawner at the origin of 3). The regime duration indicates the average 

duration in years of each high or low productivity regime. 
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Figure 43. Median estimates of the difference in harvest rate that would produce MSY derived from a 

Ricker production function fit to run reconstruction estimates, compared to that which produced the 

maximum yield in simulated projections (i.e., estimated harvest rate at MSY minus the harvest rate that 

produced the maximum yield in simulated projections). Blue (red) values indicate that the estimate from 

the Ricker model was less (greater) than that which would produce the maximum yield. Values of regime 

strength indicate how many times greater the recruits-per-spawner at the origin is during high 

productivity periods is than during low productivity periods (e.g., 4 is 4-fold above the low productivity 

recruits-per-spawner at the origin of 3). The regime duration indicates the average duration in years of 

each high or low productivity regime. 
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Figure 44. Median estimates of the spawning escapement that would produce MSY derived from a Ricker 

production function fit to run reconstruction estimates divided by the optimal escapement, i.e, the one 

that produced the maximum yield in simulated time-series projections. Red (blue) values indicate that the 

estimate from the Ricker model was greater (less) than that which would produce the maximum yield. 

Values of regime strength indicate how many times greater the recruits-per-spawner at the origin is during 

high productivity periods is than during low productivity periods (e.g., 4 is 4-fold above the low 

productivity recruits-per-spawner at the origin of 3). The regime duration indicates the average duration 

in years of each high or low productivity regime. 
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Figure 45. (Top) Comparison of relationship between spawning stock size and the subsequent recruitment 

for Chinook salmon in the Kuskokwim River, based on output from three different run-reconstruction (RR) 

models. Data points include estimates from the original model and the old lower river expansion factors 

from Schaberg et al. (2012) (dark green), the original model and the new lower river expansions (orange), 

and with a revised model using the new lower river expansions (blue). Here, the revised model includes 

log-normally distributed errors on weir and aerial survey indices, pooled variances for each of these survey 

types, and a reformulated harvest likelihood that allows model convergence. For analyses using the 

original model, we show output from the solution with the lowest negative log-likelihood here. Curves 

show best fits of the Ricker stock-recruit function fit with log-normally distributed and autocorrelated 

errors. (Bottom) Curves showing expected surplus production as a function of escapement for each of the 

Ricker functions shown in top panel. Vertical lines show Smsy, the escapement that would produce MSY at 

equilibrium. The shaded regions show the range of escapements that would produce yield that is at least 

90% of expected MSY at equilibrium. The black horizontal bar denotes the current range of the ADFG 

escapement goal (“Current EG”). 
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Appendix 1. Original scope of work from the Steering Committee of the Arctic-Yukon-Kuskokwim 

Sustainable Salmon Initiative (AYK SSI), commissioning this report. 

  
 
To:           AYK SSI Steering Committee  
 
From:             STC Sub-Committee: Milo Adkison, Daniel Schindler, Andrew Munro and John 

Sky Starkey (AYK SSI Steering Committee Representative) 
 
Date:            May 22, 2016 
 
Subject:           Scope of Work for STC Recommended Project:  Independent Peer Review Panel  

to Review Run Reconstruction & Spawner-Recruit Models for Chinook salmon in 
the Kuskokwim River 

 
 

OVERVIEW: 
 
At their April 15, 2016 meeting, the SC took two actions with regard to the STC proposed project 
“Independent Peer Review Panel to Review Run Reconstruction & Spawner-Recruit Models for Chinook 
salmon in the Kuskokwim River.”  
 
First, the SC asked Sky Starkey to serve as a SC rep. to the existing STC Subcommittee, which consists of 
Milo Adkison, Daniel Schindler and Eric Volk (now replaced by Andrew Munro from ADF&G). Second, the 
SC requested the Subcommittee to come back to them in 4-6 weeks with a draft project scope of work – 
presented below- addressing the follow two components: 
 

1.  Initial phase wherein an Independent Peer Review Panel would conduct a review and 
evaluation of the structure and performance of the drainage-wide run reconstruction and 
spawner-recruit models for generating estimates of stock status, trends, and productivity. 
 
2.  Second phase wherein the Independent Peer Review Panel would meet and collaborate with 
ADF&G's modeling team to discuss the findings of the panel’s review and cooperatively explore 
approaches to integrating panel recommendations into future modeling efforts. 

 
 
INTRODUCTION:   
 
The run reconstruction model is the core stock assessment tool to estimate annual Chinook salmon run 
abundance in the Kuskokwim River. The model uses observed data from weirs, aerial surveys, harvest, 
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and total abundance estimates based on a mark-recapture study to estimate a historical run abundance 
time series from 1976-2015. The model was developed by Brian Bue with input from ADF&G stock 
assessment scientists and was completed in 2012 (Bue et al. 2012). The original report can be accessed 
at: http://www.adfg.alaska.gov/FedAidpdfs/FDS12-49. There have been several minor changes to that 
model in 2014, as noted in a memorandum from Hamazaki and Liller (2015). Estimates of historic run 
abundance is critical component for spawner-recruit analysis and setting optimal biological escapement 
goals.  
 
Effective conservation and management of salmon stocks in data-limited situations such as the AYK 
region require both:  1) reliable and transparent models for assessing stock status, trends, and 
productivity, and the associated uncertainties associated with these estimated parameters; and 2) a 
high degree of confidence in these models and their outputs by stakeholders and partner management 
agencies.  
 
Stock assessment models informing management decisions that do not engender broad confidence 
inevitably generate conflict, which is costly to management agencies and stakeholders. Application of 
models to steeply declined stocks or stocks in rebuilding mode requires additional attention and 
vigilance to ensure unbiased model assessments of stock status.  
 
Peer review is one of the foundations of science. By far the most widely accepted and robust approach 
to technical review and verification of stock assessment models informing management decisions – the 
gold standard for ensuring sound scientific advice – is use of independent expert peer review panels 
(NMFS 1999, NMFS 2001, NRC 1998, NRC 2002, NRC 2004). ADF&G routinely engages in other external 
reviews of technical analyses or stock assessments, as we are proposing here for Chinook salmon in the 
Kuskokwim River.  
 
There are several reasons for proposing to conduct an independent peer review at this time:  

1. Recent annual estimates of Kuskokwim River Chinook salmon run size were based on an analysis 
by Bue et al. (2012), who reconstructed historical sizes from several different sources of data 
collected from Kuskokwim River fisheries and a variety of escapement monitoring projects. This 
model was re-coded in 2014 to include some minor changes and was more recently re-coded in 
AD Model Builder with some important changes to the model structure (Martell 2016). In the 
process of developing this run reconstruction model – from initial development, subsequent 
revisions to identifying an escapement goal range (2013) for Alaska’s largest Chinook salmon 
subsistence fishery – it has not received a formal, independent peer review.  

2. The AYK SSI Chinook Salmon Action Plan states that: “The dominant influence of density-
dependent factors on recruitment dynamics in Kuskokwim River Chinook salmon is anomalous 
when compared with the other stocks analyzed by Catalano (2012).”  The apparently strong 
density-dependence suggests that escapement goals should be near the lower end of 
historically-observed spawning abundance, which is risky unless there is high confidence in the 
analysis. Within a precautionary framework, the combined presence of this anomalous spawner-
recruit relationship with steep declines and on-going conservation concerns warrants formal 
external review. The STC Subcommittee is concerned that several recent analyses using a similar 
run reconstruction or escapement goal methodology have suggested escapement goals near or 
below the lowest historical escapement. 

 
3. These models have implications for other salmon stocks. There are plans and initial efforts to 

apply a related model to Chinook salmon returning to the Canadian portion of the Yukon River. 

We can reasonably expect stakeholders in the Yukon River watershed to expect answers to 
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these same questions regarding the structure and performance of the model. It would be 

desirable to complete a more comprehensive evaluation of the structure and performance of 

these run reconstructions prior to applying them to other data-limited cases in the AYK region 

and beyond.  

 

4. These run reconstruction models have implications for management of other species – namely 
impacts on the total allowable catch of Bering Sea pollock – and are now inextricably linked to 
the NMFS and the NPFMC process via the “three river index” and the Proposed Rule for Chinook 
salmon bycatch. The NMFS has a robust external technical review for stock assessments 
conducted by the NPFMC BSAI and GOA Plan Teams and the Council’s Scientific and Statistical 
Committee (SSC). In addition to the Martell (2016) technical comments to the NPFMC on behalf 
of the Pollock fishing industry, we can reasonably expect other stakeholders involved in the 
Council process to press for application of these same technical review standards to the 
Kuskokwim run reconstruction models.  

5. It is critical to appropriately assess the nature and cost of uncertainty and risk in data-limited 
stock assessments (NRC 1998). Evaluation of the application of a Bayesian approach to an 
integrated run reconstruction – spawner-recruit analysis has a number of benefits including “an 
enhanced ability to incorporate auxiliary information, convenient and rigorous consideration of 
measurement error and missing data, and a more complete assessment of uncertainty” 
(Fleischman et al. 2013: 401).  

6. The STC Subcommittee is concerned that current assessments of the relationship between 
spawning stock abundance and production do not appropriately account for errors (precision 
and bias) in data collection and in model analyses of these data. The current relationship 
between spawning stock abundance (i.e. escapement) and production is suspiciously precise 
given the vast region encompassed by the Kuskokwim watershed and the ability to effectively 
monitor basin scale escapement and harvest. 

7. Lastly, the timing for beginning the peer review process (Fall 2016) is such that data from the 
final year of the three year Mark/Recapture project will be available by about the time the Panel 
would begin its work. We are aware of no significant additional data sources available for 
inclusion in the model. 

 

PROJECT OBJECTIVE:  

Conduct, via an independent panel of highly qualified stock assessment experts, a 
comprehensive evaluation of the structure and performance of Kuskokwim River Chinook 
salmon drainage-wide run reconstruction and spawner-recruit models for generating reliable 
estimates of stock status, trends, and productivity. 
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METHODS: 

This section provides an overview of proposed approach to achieving the project objective and is 
summarized in Figure 1 below.  

 

 
Figure 1: Overview of Independent Peer Review Process. 

 

INITIAL ANAYSIS PHASE: (COMPLETED):   

An AYK SSI funded project “Evaluating data-limited salmon assessments with application to AYK stocks“ 
by Catalano (Auburn University) and Fleischman (ADF&G) is a first step in contributing to this broader 
review process by conducting three sensitivity analyses to evaluate the structure and performance of 
these models (See project abstract and research question in Appendix #1).  

1. The first set of analyses investigated the sensitivity of the 2014 version of the Bue et al. (2012) 
run reconstruction (“the R model”) to five different data weighting assumptions. That report, 
titled “Description of the Kuskokwim River Chinook Salmon Run Reconstruction and an 
Investigation of Data Weighting” was prepared at the request of the KSMWG and was released 
summer 2015.  

2. The second analysis involved challenging the Bue et al. (2012) model with simulated data as a 
means of exploring the sensitivity of escapement estimates to changes in simulated (i.e. 
specified) values of a set of stock assessment parameters. This analysis also explored a range of 
different data configurations that included varying the proportion of years that received a 
telemetric mark-recapture study, the relative proportions of aerial surveys and weirs, and the 
total number of escapement monitoring projects.   
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3. The third analysis assessed the sensitivity of the integrated run reconstruction spawner-
recruit model to changes in structural assumptions of the run reconstruction model.   

The latter two analyses will be available in their project final report to AYK SSI in late May, 2016  

 

PHASE 1: INDEPENDENT PEER REVIEW PANEL PROCESS: 

Appointment of Independent Peer Review Panel members:  Four experts with a range of appropriate 
stock assessment modeling expertise will be appointed to the Independent Peer Review Panel by the 
non-conflicted members of the AYK STC. To maintain independence of the panel, and avoid conflicts of 
interest, panel members must agree to abide by the “Conflict of Interest Policy for AYK SSI Peer 
Reviewers” (Appendix #2). Academic and private sector members of the Panel will be compensated for 
their work on the panel.  

The Independent Peer Review Panel will request ADF&G to identify a data and model liaison to work 
with the Panel (propose STC member Andrew Munro to serve in this capacity). As with other AYK SSI 
expert panel processes (e.g., The Escapement Goal and Chinook Action Plan Expert Panels) the AYK SSI 
staff Research Coordinator and Program Manager are available to assist the panel Chair and members in 
implementing this project.  

The Panel will begin their review with thorough consultation with the ADF&G data liaison and the 
relevant modelers from ADF&G familiar with the data and development of the models in order to: 

1. Access all relevant data, metadata, and model code. 
2. Ensure a thorough understanding the data sources, their limitations, and structure of the 

models. 
3. Ensure a thorough understanding of any anticipated revisions to the models. 

Second, the Panel will review and consider the findings and sensitivity analyses presented in the 
Catalano & Fleischman project final report as discussed in the initial model review phase described 
above.   

Third, building on the findings of existing model reviews, the Panel will identify and commission 
additional analyses, as needed, to further explore topics regarding model structure and performance as 
well as the limitations and uncertainties of historical stock assessment data, and new data that might 
become available under an expanded research program. The Panel would identify independent expert 
biometricians to conduct these analyses under their direction.  

Potential Model Analyses / Review Topics:   

The entire set of analyses and model review topics cannot be determined in advance of convening the 
Panel. However, we provide below a summary of some potential model analyses and review topics:  

 The primary objective of the analyses will be to evaluate the reliability and sensitivity of the model 
outputs, given uncertainties in data and in model formulations, that most affect management. These 
include estimates of optimal escapement goal ranges and forecasts of next season’s returns. 

 The recommended approach is an evaluation similar to that employed by Catalano, Staton, and 
collaborators, who simulated stock dynamics, data collection, and data analysis to compare 
estimation outputs to the simulated true stock properties.   

 The scenarios explored will be refined in the course of further meetings and examination of 
preliminary results. However, the STC expects the following types of scenarios to be investigated: 
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1. Assessment of relationships between escapement and production at the sub-basin scale 
where data are the high quality (i.e. tributaries with weirs), compared to basin-wide 
assessments of these relationships 

2. Low contrast in historical escapements; either low escapements from historically high 
harvest rates, or high escapements due to historically low harvest rates 

3. Alternative assessment model assumptions; examining varying degrees of asynchrony in 
substock components, both on a year-to-year basis or in longer-term trends 

4. Regime shifts resulting in persistent change in stock productivity or escapement quality both 
at the river scale and at the sub-basin scale 

5. Loss of or degradation in the quality or quantity of data of different types, as well as 
improvement in data quality or the addition of new types of data (e.g., new adult 
abundance estimates). 

It is anticipated that during this phase, the Panel will regularly consult with the ADF&G modeling team 
regarding planned analysis and questions about model data sources.  

Following completion of their analyses and review, the Panel will prepare a technical report presenting 
their findings and any recommendations for improvements. This will include an executive summary 
appropriate to non-technical audiences.  

 

PHASE 2: COLLABORATIVE MODELING PHASE 

Independent Peer Review Panel findings are not binding on ADF&G. However, they are intended to 
provide expert scientific advice about strengths of existing models, potential improvements to model 
performance in response to particular types of data or sources of uncertainty or insights about the best 
approaches to incorporate new data into run reconstruction and spawner-recruit models.  

This “Collaborative Modeling Phase” is designed to provide time and resources to support meetings 
between Panel Members and the ADF&G modeling team to discuss findings and collaboratively explore 
and implement recommendations on model development or data collection that may be helpful to 
ADF&G. This phase may include a mix of more formal collaborative discussions and informal technical 
sessions where participants are working directly with data sets and model code to explore alternate 
approaches. 

 

DELIVERABLE PRODUCTS:   

1. Report and Recommendations from the Independent Peer Review Panel (Dec. 2017)  

2. Capacity Building / Outreach Seminar (Fall 2017)  

3. Summary of post-review collaborative model session with peer review panel members and 
ADF&G Modeling Team.  
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PEER REVIEW PANEL PROCESS TIMELINE:  

TASKS 2016 Jun-Dec 2017 Jan-June 2017 July-Dec 2018 Jan- Jun 

Appoint 
Independent Peer 
Review Panel 

Peer Review Panel 
Appointed by Sept.1   

  
 

Access Code & Data 

Work with ADF&G Data 
Liaison; initial 
consultation session with 
ADF&G modeling team. 

  

 

Conduct Analysis 
and Peer Review  

Independent Peer Review Phase: Sept. 2016-Dec. 2017. Includes three 
in-person meetings during the course of this phase.  

 

Capacity Building 
Seminar 

Periodic briefings in non-technical language at key points ruing this 
process. 

Outreach / Capacity 
Building seminar: Jan. 
or Feb.2018 

Final report   

Draft Final report 
produced by Nov. 
15th; finalized by 
Dec. 15th 

 

Collaborative 
Modeling Phase 

   

Two in-person 
meetings / 
collaborative 
modeling sessions 
with Panel & ADFG 
modeling team (Jan & 
March 2018) 

 

CAPACITY BUILDING:   

 Stakeholders will receive periodic briefings in understandable, non-technical language at key 

points throughout this process.  

 As the Peer Review Panel completes their work on Phase 1, we propose to present day-long 

non-technical seminar on salmon stock assessment models for interested stakeholders.  
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Appendix 1a:  Catalano & Fleischman Funded AYK SSI Project Abstract & Research questions:  

 
Project Title:  Evaluating data-limited salmon assessments with application to AYK stocks 
 
Investigator(s): Dr. Matthew J. Catalano, Principal Investigator, Assistant Professor, Department 

of Fisheries and Allied Aquacultures, Auburn University 
 

Steve Fleischman, Fisheries Scientist, Division of Sport Fish, Alaska Department of 
Fish and Game,  
 

Project Period: October 1, 2013 – February 29, 2016 
 
Study Location: Kuskokwim River and other large western Alaska drainages 
 
Abstract: Evaluating hypotheses for AYK Chinook salmon (Oncorhynchus tshawytscha) 

declines and managing these stocks requires that we obtain reliable estimates of 
stock status, trends, and productivity. These estimates have been obtained from 
novel drainage-wide run reconstruction models developed specifically for data-
limited cases.  However, these models have potential pitfalls that warrant further 
investigation.  In particular, the models may be susceptible to bias stemming from 
incomplete temporal and spatial coverage of run enumeration projects and 
natural between-stock variation in population dynamics within a drainage.  We 
will investigate the circumstances under which these drainage-wide 
reconstructions provide accurate and precise estimates of Chinook salmon 
abundance and productivity.  We undertake this work from a Bayesian 
perspective, which means that we will incorporate into the models different types 
of uncertainty and will allow the inclusion of prior information on stock 
abundance and productivity.  First we will use a series of computer simulation-
estimation analyses to test the influence of (1) among-stock within-drainage 
temporal variation in population dynamics, (2) data quality, (3) data quantity, and 
(4) data type on the accuracy and precision of these models.  We will also consider 
the costs of data collection scenarios in light of model performance.  This analysis 
will provide guidance on the reliability of these models under different data 
collection scenarios and their associated costs, which will aid prioritization of field 
sampling programs.  Second, we will apply the Bayesian state-space formulation 
of the model to the Kuskokwim River Chinook salmon stock and conduct a 
thorough sensitivity analysis of abundance, productivity, and hypothetical 
escapement goals.  The application of the Bayesian approach to this stock will 
more thoroughly deal with the many uncertainties in this system.  The Kuskokwim 
run reconstruction relies on drainage-wide estimates of total abundance from 
telemetric mark-recapture and empirical abundance-drainage area models.  We 
will explore new methods for salmon telemetric mark-recapture analyses and will 
conduct an analysis of associations between Alaskan Chinook salmon abundance 
accessible drainage area.  This project will provide a starting point for any future 
efforts to incorporate risk and uncertainty into harvest policy analyses for the 
Kuskokwim Chinook salmon stock. 
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Objectives and Project Design  

1. Rationale & Project Research Question:  We will investigate whether, and under what 
circumstances, drainage-wide Bayesian state-space run reconstruction models provide accurate 
and precise estimates of Chinook salmon abundance, productivity, and management quantities.  
These models are increasingly being used to asses AYK Chinook salmon stocks, but the models 
have not been fully tested for performance under realistic ranges of population dynamics 
parameters, data quality, quantity, and type (e.g., weir, air survey, mark-recapture).  We will use a 
simulated hypothetical drainage that emulates the Kuskokwim River watershed to evaluate how 
variation in population dynamics among stocks within the drainage, as well as data quantity, 
quality, and type affect the accuracy, precision, and cost of estimates of abundance and 
productivity from these models.  We hypothesize that performance of these models will be 
reduced when temporal variation in productivity is weakly correlated among stocks within the 
drainage, and under low data quality, and quantity.  We will then apply the model to historical 
data from the Kuskokwim River stock and compare the results with the Bue et al. (2012) penalized 
maximum likelihood approach.  We hypothesize that the application of the Bayesian approach to 
the Kuskokwim Chinook case will result in greater uncertainty in model estimates, which will carry 
through to estimates of management quantities such as escapement that produces maximum 
sustained yield (Smsy). This more thorough treatment of uncertainty could benefit future policy 
setting efforts by facilitating structured thinking regarding the risks associated with various 
harvest policies.  Development of an alternative analysis for total abundance estimates from 
mark-recapture and abundance-area relationships will improve management by potentially 
reducing bias and uncertainty in these estimates.   
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Appendix 1b: Conflict of Interest Policy for AYK SSI Peer Reviewers 

 

CONFLICT OF INTEREST POLICY FOR AYK SSI PEER REVIEWERS  

As a peer reviewer you have been asked to review a research proposal for funding by the 

AYK Sustainable Salmon Initiative.  The performance of your review requires that you 

be aware of potential conflicts of interest.  Prior to reviewing this proposal we ask that 

you read the “Conflict of Interest Statement for Peer Reviewers” below and review the 

examples of potentially biasing affiliations or relationships listed below.  Please complete 

the certification statement below if conflicts of interest do not exist and return via e-mail 

with your completed review or fax it to the AYK SSI Office at 907-258-6688.  If you 

cannot sign this form due to a conflict of interest, please contact us immediately and 

return all materials to the AYK Sustainable Salmon Initiative.  Conflicts of interest are 

not accusations and do not imply that a reviewer’s judgment is compromised.   

 

Conflict of Interest: A conflict of interest exists when financial interests, or other 

opportunities for tangible personal or professional benefit, could be construed to exert an 

improper influence on a peer reviewer’s professional judgment.  Improper influence 

could be used not only to advance one’s own research program but also to promote 

unfairly a colleague’s or former graduate student’s program.  Thus, care must be 

exercised to avoid a conflict of interest during the peer-review process and the discussion 

of past, current, or proposed research.  A conflict of interest also exists when 

circumstances simply have the appearance of compromising the professional judgment of 

a member.  Conflicts of interest are not accusations and do not imply that a member’s 

judgment was compromised.  It is the policy of the AYK Sustainable Salmon Initiative’s 

Scientific and Technical Committee that conflicts of interest should be avoided wherever 

possible and disclosed and minimized in situations where interests cannot be reasonably 

separated. 

 

Confidentiality: The AYK Sustainable Salmon Initiative receives proposals and 

manuscripts in confidence and protects the confidentiality of their contents.  Everything 

about the proposal must be kept in strict confidence.  If, as a peer reviewer, you gain 

access to information not generally available to the public, you must not use that 

information for your benefit or make it available for the benefit of any other individual or 

organization without the permission of the authors. You must not quote or otherwise 

disclose or use material from any proposal that you review. You are not to discuss 

proposals or manuscripts with its authors or other colleagues.  Questions about the 

proposal are to be discussed with the person coordinating the review of this proposal but 

with no one else. 
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AYK Sustainable Salmon Initiative Peer Reviewers 
 

Relationship with the principle investigator(s). 

 

1. Known family or marriage relationship. 

 

2. Business or professional partnership. 

 

3. Past or present relationship as a thesis advisor or thesis student. 

 

4. Other relationships, such as close personal friendship, that might tend to affect your 

judgment or may be seen as doing so by a reasonable person familiar with the 

relationship. 

 

Relationship to the principle investigator(s) institution: 

 

1. Current employment at the institution associated with the proposal; or employment with 

the institution via consulting or an advisory arrangement; or employment within the last 

12 months, or you are currently being considered for employment with the institution. 

 

2. Holder of any office, governing board membership, or relevant committee chair in the 

institution. 

 

3. Current enrollment as a student in the department or school of the institution that 

originates the proposal. 

 

Confidentiality of Peer Reviews and Reviewer Identities 
 

AYK Sustainable Salmon Initiative policy is that reviews and review identities will not 

be disclosed except that verbatim copies of reviews (without name and affiliation of the 

reviewer) will be sent by staff to the principal investigator.   
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Overview 

This review of the mark–recapture estimates of Chinook salmon abundance in the Kuskokwim River is 

based on the annual reports for 2014–2016 by Head et al. (2017) and Smith and Liller (2017a, b) and the 

compilation for 2002–2007 by Schaberg et al. (2012).  The review examined the assumptions, 

estimation, and variance calculations for the single mark–recapture studies performed in those years.  

No attempt was made to independently check the numerical calculations for accuracy.   

The mark–recapture studies are based on the joint use of dual radio/spaghetti-tagged and spaghetti-

tagged adult Chinook salmon.  Considerable effort and diligence went into the design and conduct of the 

studies that involved tracking the fate of the radio-tagged fish over vast areas and the collection of 

recovery data from multiple weirs.  Attention to model assumptions and their implications to mark–

release and recovery data collection are evident.  The goal of estimating annual abundance within a 

±25% (i.e., CV = 12.5%) were commonly met, 2014–2016.   

This review is organized starting with a summarial response to technical questions that were proposed 

for the review.  The next section is a technical overview of the mark–recapture reports, followed by 

specific comments, and concluding with analytical appendices.  The review was so structured that 

interested parties can read the review at different technical levels of specificity as the report progresses. 

Response to Review Questions 

Question 1:  Are the current mark-recapture methods used to estimate abundance of Kuskokwim River 

Chinook salmon likely to produce unbiased estimates? 

The mark–recapture studies have been refined over time as the understanding of how to sample the 

system improved and as concerns over model assumptions have been elevated.  The 2014–2016 studies 

are well crafted and the model assumptions are taken seriously.  The reanalysis of the 2002–2007 data is 

in light of this improved knowledge. 

The single mark–recapture model requires at least one of the two samples be representative of the 

population.  In a multi-run, multiple-recapture-location scenario, as is the case with the Kuskokwim 

River, this assumption can be easily violated if sufficient care is not taken.  The study has taken great 

lengths, both logistically and analytically, in recent years to help assure this assumption is met.  The 

2002–2007 retrospective reanalysis evaluated this assumption in 2007 and applied the results to prior 

years.  The study also correctly inferred from the Lincoln/Petersen index when mortality only is 

operating in the population, the abundance is being estimated at the time (or place) of the initial 

sampling.  Tag loss based on dual-tagging of fish is also being properly estimated and taken into account. 

Other model violations such as post-release handling effects and high grading of the mark–released fish 

could be sources of bias of unknown size.  The unexpected number of radio-tagged fish that residualized 

in the mainstem without entry into the natal tributaries could be indicative of delayed handling effects 

that should be further investigated.  Irrespective of this comment, I believe no major sources of bias 

exist in these studies. 
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Question 2:  What are the key assumptions of the current mark-recapture experiments and are they 

likely to be met given the current experimental design and implementation? 

The key assumptions of the model are the random and independent sampling of the population in the 

two periods of the Lincoln/Petersen index.  This assumption can be relaxed to at least one of the two 

periods representatively sampling the population.  The investigators correctly identified this concern 

when estimating the abundance in the complex system of runs and natal tributaries within the 

Kuskokwim River.  These assumptions have been met with the implemented logistics of the study and 

thoroughly tested with the data collected.   

Other key assumptions include the number of fish marked (𝑛1) and examined for marks (𝑛2) are known 

without error and marked–recaptured fish (𝑚) are properly identified.  The assumption of 𝑛1, 𝑛2, and 

𝑚 known without error can be relaxed to allow the quantities to be estimated unbiasedly, as long as the 

variance calculations correctly take into account these extra sources of sampling error.  The total weir 

passage (𝑛2) is not enumerated but must be estimated (𝑛̂2) for outages, etc.  The reports indicated as 

much as 99% of the weir passage is enumerated and only small adjustments are used.  The exact 

method of adjustment and the size of adjustments are not specified, and that source of uncertainty is 

currently not incorporated into the error variance for 𝑁̂.  The number of radio-tagged, mark-recaptured 

fish (𝑚) is adjusted for tag loss by an appropriate approach, assuming the loss rate for spaghetti tags is 

zero.   

These key assumptions appear to be met or properly accounted for by analytical adjustments to the 

abundance estimator. 

Question 3:  Are the levels of precision currently reported from mark-recapture experiments likely to 

appropriately reflect the uncertainties in estimates of abundance, given the possibility of violating key 

assumptions described above? 

The investigators have chosen to use Monte Carlo bootstrap techniques to estimate the variances and 

construct 95% confidence intervals (CIs) for the annual abundance estimates (𝑁̂).  These techniques are 

appropriate if the sampling processes are properly simulated and all sources of variance incorporated.  

The sampling scheme used in the Kuskokwim River is rather simple, and the variance of 𝑁̂ can be 

derived analytically to produce a closed-form expression for the variance of 𝑁̂ that explicitly 

incorporates all sources of variance (Appendices A and B).  This variance formula should be used to 

determine where the Monte Carlo variance estimates comport.  The advantage of the Monte Carlo 

bootstrap estimates if done correctly is in CI construction.  At small sample sizes, 𝑁̂ may not be normally 

distributed and the Monte Carlo CI estimates will capture the right-hand skewed distribution.  In 

variance calculations, I recommend 10,000, not 1,000, simulations to accurately estimate the variance.  

The advantage of the analytical variance is the ability to assess the relative contributions of the error 

sources to overall precision. 

The description of the bootstrap procedure is incomplete and vague, making it difficult to assess 

whether the sampling processes are being modeled correctly.  Generation of 𝑚’s is a compound process 

that is not being explicitly described.  The variance in the estimate of the weir passage counts (𝑛̂2) is not 

being incorporated in the variance calculations.  On the other hand, the number of marked releases (𝑛1) 

is a known constant for radio-tagged releases but is being treated as a binomial random variable 

unnecessarily.   
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The largest contributor to the variance of 𝑁̂ is the mark–recapture process.  Contributions associated 

with the estimation of 𝑚̂, 𝑛̂2, and possibly 𝑛̂1, are relatively smaller.  A quick check suggests the report 

coefficients of variation (CVs) are of the proper orders of magnitude but attention to detail will improve 

the confidence in the reported results. 

Despite a statement made in the 2015 (p. 12) annual report, the Monte Carlo methods estimate the 

variance of 𝑁̂ only under the assumption of the nominal mark–recapture model.  The simulations do not 

capture the effect of model violations on the estimates of 𝑁1 nor are they robust to model violations.  

Separate simulations under alternative model scenarios would be necessary to perform a robustness 

evaluation.   

Note the variance of 𝑁̂ is ∝ 𝑁̂2 (Equation A9).  This implies Var̂(𝑁̂) and 𝑁̂ are not independent.  For all 

else being equal, the variance estimate will increase as the abundance estimate increases.  

Consequently, low abundance years will look relatively more precise than larger abundance years.  In 

performing weighted (𝑤) analyses using the abundance estimates, it is therefore not appropriate to 

weight inversely proportional to the variance, i.e., 

𝑤𝑖 ∝
1

Var̂(𝑁̂𝑖)
 

but instead to weight 

𝑤𝑖 ∝
1

(
Var̂(𝑁̂)

𝑁̂2 )

=
1

CV(𝑁̂)
2. 

In this case, CV(𝑁̂) is roughly independent of 𝑁̂,  and the weights are proportional to the relative error. 

Question 4:  Given that some details of the mark-recapture experiments have changed among years 

(e.g., location of release site), what are the appropriate ways to use data from mark-recapture 

experiments, in years where no such experiments were run? 

The Schaberg et al. (2012) report went a long way in bringing the 2003–2007 mark-recapture surveys to 

the same level of rigor observed in the 2014–2016.  The 2014 survey estimates abundance to rkm 294, 

while 2015 and 2016 estimate abundance to rkm 67. 

It is not clear for the purposes of run reconstruction whether abundance estimates for the years 2008–

2013 are needed.  Nevertheless, if abundance values are desired for the intermediate years, perhaps a 

regression estimator could be used regressing the estimates of 𝑁̂1 in available years against escapement 

indices (𝐼𝑖) based on weir counts, i.e., 

𝑁̂𝑢 = 𝛼 + Σ𝐵𝐼𝑖. 

Then using comparable weir count indices in out-years, project the abundance that might have occurred 

in those missing years.  The projection will likely be noisy. 

Question 5:  How should abundances of fish returning to tributaries downstream of the release site be 

estimated and incorporated into estimates of total in-river abundance? 
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The 2015–2016 mark–recapture studies were adjusted to estimate abundance above rkm 67 instead of 

rkm 294 by adjusting the release point for 𝑛1.  This seems a good strategy to reduce the amount of 

lower river abundance uncovered by the mark–recapture study.  In the area below rkm 67, a ratio-type 

estimator (Schaberg et al. 2012:11, Equation 10) or regression estimator seems most appropriate.  

While Equation 10 of Schaberg et al. (2012) is suited for a single year, the model could be extended to a 

regression approach across multiple years.  The multi-year regression model would more realistically 

estimate uncertainty because it would include lack-of-fit, which variance Equation 14 of Schaberg et al. 

(2012) does not.  In estimating the variance for the predictor, it is also important to use the proper 

variance for predicting a “new y” (Kutner et al. 2004:55–60). 

Review of Statistical Methods to Estimate Kuskokwim Chinook Salmon Abundance  

2014–2016 

A combination of dual radio-tagged/spaghetti-tagged fish and spaghetti-tagged fish were used to 

estimate Chinook salmon abundance in the Kuskokwim River, Alaska, 2014–2016.  While superficially 

similar, all three studies using a variation on the Lincoln/Petersen index two-sample, mark–recapture 

model, the specifics of the estimation process varied between years (Table 1).  The abundance estimator 

is based on three presumably known quantities: 

 𝑛1 (i.e., 𝑀′) = number of tag released fish available for recapture, 

 𝑛2 (i.e., 𝐶′) = number of fish examined in period 2 for tags, 

  𝑚 (i.e., 𝑅′) = number of mark–recaptured fish in period 2. 

The three years of study differ with regard to which of these quantities were estimated and how they 

were estimated.  The overall abundance estimator does not differ but the variance of the abundance 

estimator does.  The annual reports used Monte Carlo simulation techniques to estimate the variance 

and 95% CIs.  Analytical techniques to estimate the variance would improve the transparency of the 

process and would provide indications of the sizes of the different sources of sampling variance.  The 

most important reason for estimating the CI by Monte Carlo simulation is concern for nonnormality and 

asymmetry of the interval estimates.  The small sample size in 2014 justified the use of the Monte Carlo 

approach in 2014 but was unnecessary in 2015–2016 because of larger sample sizes and near symmetric 

interval estimate results. 

 

Table 1.  Summary of the nature of the mark–recapture quantities used in estimating Chinook salmon 

abundance in the Kuskokwim River, 2014–2016, along with tagging method and study areas.  

 2014 2015 2016 

𝑛1  Known Estimated Known 

𝑛2  
Assumed known without 

error 

Assumed known without 

error 

Assumed known without 

error 
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𝑚  Estimated Estimated Estimated 

Primary tag used in 

mark–recapture ratio 
Radio tag Spaghetti tag* Radio tag 

Abundance estimated 

upstream from rkm 
Rkm 294 Rkm 67 Rkm 67 

 

*𝑁̂ could have also been estimated using radio-tag recoveries 

 

Taking the variance of the Lincoln/Petersen index in stages, an overall variance of 𝑁̂, taking into account 

uncertainty in all 3 of the mark–recapture counts (i.e., 𝑛̂1, 𝑛̂2, and 𝑚̂), can be written as follows: 

Var(𝑁̂) ≈ 𝑁2 ((
𝑁

𝑚𝑛2
) + (

2𝑁

𝑛1𝑛2
)
2

+ 6(
𝑁

𝑛1𝑛2
)
3

) + 𝑁2 ∙ CV(𝑛̂1)
2 +𝑁2 ∙ CV(𝑛̂2)

2

+ (𝑁2 + Var(𝑁̂)) ∙ CV(𝑚̂)2. 

(1) 

 

Special annual cases can be readily obtained by setting the coefficient of variation (i.e., CV(𝜃̂) =

SE(𝜃) 𝜃⁄ ) to zero for quantities known without error.  All of the 2014–2015 analyses assumed the weir 

passage counts were measured without error (i.e., CV(𝑛̂2) = 0).  In other years, 𝑚 and sometimes 𝑚 

and 𝑛1 were estimated with error (Table 1).  There are indications the Monte Carlo simulations did not 

always identify the proper error sources to incorporate in the analyses.  Their results should be checked 

against Equation (1) for comport. 

If the mark–recapture estimates are going to be used to calibrate the reconstruction model, the annual 

estimates should be comparable.  In 2014, the baseline of the study area was rkm 294; in 2015–2016, it 

was rkm 67.  Using the 2015 radio-tag data with a probability of migrating from the tag site to rkm 294 

of 505/623, the abundance estimate is  𝑁̂ = 107,645.7, down from the reported value of 𝑁̂ = 115.541 at 

rkm 67.  In 2016, the abundance at rkm 294 would be estimated at 𝑁̂ = 107,310.9, compared to the 

reported value of 120,000 at rkm 67. 

Extraordinary efforts were used to determine the fate of each radio-tagged fish and assess model 

assumptions.  In a mixed run, multiple recovery site study, it is easy to violate the assumptions of equal 

capture probabilities and independent sampling.  In a Lincoln/Petersen index study, at least one of the 

two sampling periods needs to be a representative sample of the population.  The statistical methods 

outlined in Appendix A.1 are an appropriate approach to testing these assumptions.  The attention to 

field sampling and analytical results suggest these model assumptions are being fulfilled.  However, 

sample sizes of marked fish are small, and marked fractions in the individual tributaries are tiny (i.e., 

<0.01), so the power of these tests to detect model violations should nevertheless be evaluated. 

The Lincoln/Petersen index is a closed population estimator but remains valid if the population is half 

open (i.e., mortality only or recruitment only).  When mortality only is operating during the course of 

the study, the model estimates abundance at the time (or place) of the initial sampling (i.e., rkm 294 or 

67).  The Chapman (1951) bias correction to the Lincoln/Petersen index is based on the assumption that 
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sampling can be modeled by a hypergeometric model where sample counts (i.e., 𝑛1, 𝑛2, and 𝑚) are 

integer values and 𝑛1 and 𝑛2 are fixed in advance.  It is arguable whether that bias adjustment is 

applicable at the Kuskokwim River where 𝑚 and perhaps 𝑛1 are estimated with error.  In which case, the 

traditional estimator of Petersen (1896), 𝑁̂ = 𝑛1𝑛2 𝑚⁄ , may be more appropriate. 

In general, the calculation of the point estimates of abundance appear to be correct.  However, the 

practice of rounding the estimates of 𝑚 to a whole number is inappropriate, given 𝑚̂ is really an 

estimate, not an observed count.  For instance, in 2015, rounding 𝑚 from 54.6061 to 55 changes the 

abundance estimate from 61,689.2 to 61,255.3—not a large discrepancy, but nevertheless unnecessary 

and unjustified. 

While the study took extraordinary steps to assure model assumptions, systematic errors could 

nevertheless creep into the study and should be further considered.  Among the things to consider: 

1. At the recovery sites (i.e., weir), were radio towers operating at times in 2014 when the weirs 

were not operating?  If so, the mark–recapture ratio 𝑚 𝑛2⁄  would be inflated and abundance 

underestimated.   

2. Post-release handling effects or mortality of the radio-tagged fish could bias study results.  Do 

the higher-than-expected number of radio-tagged adults remaining in the mainstem indicate a 

problem? 

3. In any tagging study, there is the inevitable and unavoidably possibility that the fish selected for 

tagging are high graded and not representative of the actual population.  No one wants to 

deliberately tag a sick or dying fish.  This type of error would underestimate abundance and, if 

inconsistent between years, distort annual trends.   

4. The studies essentially assumed the spaghetti tags had 100% retention and only radio tags failed 

or were lost.  Were any radio-tagged fish found without their corresponding spaghetti tag to 

suggest the need for a dual-tag loss correction?  The 2015 report (p. 10) states the weir crews 

“observed” the radio and spaghetti tags.  Were the radio tags checked to be operational?  The 

mark–recapture model requires tags to be both present and operationally active. 

5. The 2015 collected radio-tag data should have been comparable to the 2014/2016 studies.  An 

alternative abundance estimate could have obtained and compared to the reported spaghetti 

mark–recapture result.  This comparison would have provided a means to assess the robustness 

for the mark–recapture results.   

6. Contrary to that statement in the 2015 report (pp. 11–12), the Monte Carlo results to estimate 

CI width do not incorporate the effect of model violations.  The described Monte Carlo process 

is only looking at variability under the existing model assumptions.  Separate robustness runs 

would be necessary to this end, where model assumptions are specifically violated and modeled 

in one or more ways.   

My impression is that the point estimates of abundance are likely valid; any small bias that might exist 

would not distort the pattern of the annual trend.  On the other hand, the methods used for variance 

and CI calculations are less clear and possible errors in calculation could bias the weighting in 

subsequent run reconstructions.   

The written description of the Monte Carlo simulations to estimate CIs raises some concerns on how 

they are being performed.  With the correct assumptions and proper sampling structures, Monte Carlo 
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methods can be used to provide reliable variance and CI estimates.  If improperly constructed, the 

results can be erroneous.  Consider the following: 

1. The key element of the Monte Carlo simulations should be the modeling of 𝑚̂ as a compound 

process, where the true 𝑚 is a hypergeoemetric (or ≈binomial) random variable, a function of 

𝑛1 and 𝑛2 and, in turn, the observed 𝑚̂ is a function of 𝑚 and the tag retention rate per 2014 or 

observation rate per 2015–2016.  As described in the methods, it is not clear this compound 

process is being used.  Poorly estimated CIs would not impact the point estimates but could 

affect weights going into the run reconstruction. 

2. 2014 report (p. 10), the tag release of 𝑛1 = 329 is a known quantity without error.  However, in 

the Monte Carlo simulations, it was modeled as a binomial random variable.  This is an 

appropriate approach a priori when investigating the anticipated precision of the 2014 and 2016 

studies, but not a posteriori after a particular 𝑛1 has been realized.  However, in 2015, 

simulating the uncertainty in 𝑛̂1 when applied to the spaghetti tags is a necessary element of the 

Monte Carlo process.  The difference in approach occurs because in 2014/2016, the individual 

radio-tagged fish constituting 𝑛1 were known; this was not the case in 2015 with the spaghetti 

tags. 

3. The multinomial sampling of the tags to the various tributaries (2015, p. 6) is unnecessary, given 

marked rates were constant across the tributaries, and the data were nevertheless pooled in the 

analysis.  This element of the 2015–2016 Monte Carlo simulations is superfluous window 

dressing.  What is important is the hypergeometric sampling of 𝑚, given 𝑛1 and 𝑛2 or 

approximated by binomial sampling (Seber 1982: Equation 3.3) since 𝑁 is large and 𝑛2 𝑁⁄  is 

small. 

4. Apparently, the total estimated passage at the weirs (𝑛2) in the 2014–2016 reports are treated 

as a known constant without error, since there is no mention of it in the variance simulations.  

Ignoring this error source will underestimate the variance of the mark–recapture study. 

5. It is often recommended 1,000 simulations to examine for bias in point estimation, but a 

simulation sample size of ≥10,000 for variance estimation. 

6. Monte Carlo results should be compared to variance estimates based on Equation (1) to assure 

that the sampling is properly modeled in the simulations.  In general, the first term in Equation 

(1) will dominate the variance calculations.  The second–fourth terms of Equation (1) will 

contribute less but should nevertheless be included.   

2002–2007 

The Schaberg et al. (2012) report recalculated mark–recapture estimates of Chinook salmon abundance 

above rkm 297 for the years 2003–2007.  The recalculation was justified based on finding the various 

runs within the Kuskokwim River were proportionately marked in 2006 and 2007 and then applying that 

assumption to the years 2003–2005.  They elected not to estimate abundance for 2002 because they 

felt the fish were not tagged in proportion to abundance of the various runs that year.   

The 2003–2007 estimates of abundance were again based on the Chapman (1951) correction for the 

Lincoln/Petersen index.  Similar to 2014–2016, the weir counts were treated as known constants despite 

adjustment for periods when the weirs were inoperable.  This does not impact the point estimates but 

will underestimate the variance of 𝑁̂.  In these years, 2003–2007, no attempt was made to correct for 
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radio-tag loss/failure.  Not correcting for tag loss will result in positively biased estimates of abundance.  

In 2014 and 2015, the radio-tag retention rates were estimated to be 0.9706 and 0.9726, respectively. 

Bootstrap estimates of precision were again calculated for the 2003–2007 mark–recapture estimates.  

The 95% confidence intervals (CIs) were based on estimates of the 2.5% and 97.5% order statistics 

(Schaberg et al. 2012, Table 6), as in 2014–2016. 

As in subsequent years, 𝑛1 was unnecessarily and incorrectly treated as a binomial random variable.  In 

the Lincoln/Petersen index based on the hypergeometric model, 𝑛1 is assumed to be a fixed constant.  

In the radiotelemetry studies, the individuals constituting the 𝑛1 release are known individually and 

exactly.  This unnecessary additional would inflate the variance estimate of 𝑁̂ and brings into question 

whether the actual sampling process is properly understood.  See other comments related to variance 

estimation for the years 2014–2016. 
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Appendix A:  𝐕𝐚𝐫(𝑵̂) in Stages 

 

Considering the most general case for the Lincoln/Petersen index, where 

𝑁̂ =
𝑛̂1𝑛̂2
𝑚̂

 (A1) 

and where 

 𝑛̂1 = estimated number of marked animals released (𝑛1), 

 𝑛̂2 = estimated number of animals examined for marks in second period (𝑛2), 

  𝑚̂ = estimated number of mark recaptures (𝑚). 

The Var(𝑁̂) in this case can be derived in stages, where 

Var (
𝑛̂1𝑛̂2
𝑚̂

) = Var𝑆4 [𝐸𝑆3 [𝐸𝑆2[𝐸𝑆1(𝑁̂|𝑆2, 𝑆3, 𝑆4)]]] 

+𝐸𝑆4 [Var𝑆3 [𝐸𝑆2[𝐸𝑆1(𝑁̂|𝑆2, 𝑆3, 𝑆4)]]] 

+𝐸𝑆4 [𝐸𝑆3 [Var𝑆2[𝐸𝑆1(𝑁̂|𝑆2, 𝑆3, 𝑆4)]]] 

+𝐸𝑆4 [𝐸𝑆3 [𝐸𝑆2[Var𝑆1(𝑁̂|𝑆2, 𝑆3, 𝑆4)]]] (A2) 

and where 

 𝑆1 = denotes estimation of 𝑛̂1, 

 𝑆2 = denotes estimation of 𝑛̂2, 

 𝑆3 = denotes estimation of 𝑚̂, 

 𝑆4 = denotes the mark–recapture process. 

The first term of Equation (A2) reduces to Var𝑆4 (
𝑛1𝑛2

𝑚
) to the first term of a Taylor series, which 

according to Seber (1982:60) can be expressed as 

𝑁2 (
𝑁

𝑛1𝑛2
+

2𝑁2

(𝑛1𝑛2)
2
+

6𝑁3

(𝑛1𝑛2)
3). (A3) 

The second term of Equation (A2) reduces to 

𝐸𝑆4 [𝑉𝑎𝑟𝑆3 (
𝑛1𝑛2
𝑚̂

|𝑆4)] = 𝐸𝑆4 [(𝑛1𝑛2)
2𝑉𝑎𝑟𝑆3 (

1

𝑚̂
)]  
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𝐸𝑆4 [Var𝑆3 (
𝑛1𝑛2
𝑚̂

|𝑆4)] =̇ 𝐸𝑆4 [(𝑛1𝑛2)
2
Var(𝑚̂)

𝑚4
] ⁡based⁡on⁡delta⁡method 

=̇ Var𝑆4 [(
𝑛1𝑛2
𝑚

)
2 Var(𝑚̂)

𝑚2
] 

=̇ CV(𝑚̂)2 [Var(𝑁̂) + 𝐸(𝑁̂)
2
] 

=̇ CV(𝑚̂)2[Var(𝑁̂) + 𝑁2]. 

 

 

(A4) 

The third term of Equation (A2) reduces to 

𝐸𝑆4 [𝐸𝑆3 [Var𝑆2 (
𝑛1𝑛̂2
𝑚̂

|𝑆3, 𝑆4)]] = 𝐸𝑆4 [𝐸𝑆3 (
𝑛1

𝑚̂
)
2

Var(𝑛̂2)]  

=̇ 𝐸𝑆4 [(
𝑛1

𝑚
)
2

∙ Var(𝑛̂2)] ⁡to⁡1st⁡term⁡of⁡a⁡Taylor⁡series⁡ 

=̇
𝑛2

(
𝑛1𝑛2
𝑁 )

2 𝑉𝑎𝑟(𝑛̂2)⁡to⁡1st⁡term⁡of⁡a⁡Taylor⁡series 

=̇ 𝑁2CV(𝑛̂2)
2. (A5) 

The fourth term of Equation (A2) reduces to 

𝐸𝑆4 [𝐸𝑆3 [𝐸𝑆2 ((
𝑛̂2
𝑚̂
)
2

Var(𝑛̂1)|𝑆3, 𝑆4)]] =̇ 𝐸𝑆4 [𝐸𝑆3 ((
𝑛̂2
𝑚̂
)
2

Var(𝑛̂1)|𝑆4)]  

=̇ 𝐸𝑆4 [(
𝑛2
𝑚
)
2

Var(𝑛̂1)] ⁡to⁡1st⁡term⁡of⁡Taylor⁡series 

=̇
𝑛2

(
𝑛1𝑛2
𝑁 )

2 𝑉𝑎𝑟(𝑛̂1)⁡to⁡1st⁡term⁡of⁡a⁡Taylor⁡series 

=̇ 𝑁2CV(𝑛̂1)
2. (A6) 

Combining Equation (A3) to Equation (A5) 

Var(𝑁̂) =̇ 𝑁2 (
𝑁

𝑛1𝑛2
+

2𝑁2

(𝑛1𝑛2)2
+

6𝑁3

(𝑛1𝑛2)3
)+ 𝑁2CV(𝑛̂1)

2 +𝑁2CV(𝑛̂2)
2

+ (Var(𝑁̂) + 𝑁2)CV(𝑚̂)2. 

(A7) 

Seber (1982:60) suggests the first term in Equation (A7) can be approximated by 𝑁2(1 𝑚⁄ ), in which 

case: 
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Var(𝑁̂) =̇ 𝑁2 (
1

𝑚
) + 𝑁2 ∙ CV(𝑛̃1)

2 +𝑁2CV(𝑛̂2)
2 + (Var(𝑁̂) + 𝑁2) ∙ CV(𝑚̂)2, (A8) 

or yet more simply, 

Var(𝑁̂) =̇ 𝑁2 (
1

𝑚
+ CV(𝑛̂1)

2 + CV(𝑛̂2)
2 + CV(𝑚̂)2). (A9) 
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Appendix B:  Variance of 𝒎̂, the Estimated Number of Mark Recaptures 

 
The estimation of 

𝑚̂ =
𝑥

𝑝̂TR
, (B1) 

where  

 𝑥 = actual tag recoveries observed, 

 𝑝̂TR = probability of tag retention or operation. 

In turn, 

𝑝̂TR =
ℎ12
ℎ1

, (B2) 

where 

 ℎ12 = recovered dual-tagged fish, 

  ℎ1 = recovered fish with spaghetti tag or dual tag. 

Var(𝑚̂) = Var (
𝑥

𝑝̂TR
) 

= Var𝑆2 [𝐸𝑆1 (
𝑥
𝑝̂TR

|𝑆2)] + 𝐸𝑆2 [Var𝑆1 (
𝑥
𝑝̂TR

|𝑆2)], 

 

 

 

(B3) 

and where 

 𝑆1 = denotes estimation of 𝑝̂TR, 

 𝑆2 = recovery of active tags. 

Var(𝑚̂) = Var𝑆2 [
𝑥

𝑝TR
] + 𝐸𝑆2 [𝑥

2
Var(𝑝̂TR)

𝑝TR
4 ]. 

Assuming  

 𝐸 (
1

𝑝TR
) =̇

1

𝑝TR
, first-term Taylor series approximation, and 

 Var (
1

𝑝TR
) =̇ Var(𝑝̂TR) 𝑝TR

4⁄ , Delta method, 
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Var(𝑚̂) =̇
1

𝑝TR
2
Var(𝑥) +

Var(𝑝̂TR)

𝑝TR
4 𝐸(𝑥2) 

Var(𝑚̂) =̇
1

𝑝TR
2
Var(𝑥) +

Var(𝑝̂TR)

𝑝TR
4

[Var(𝑥) + ⁡𝐸(𝑥)2]. 

Note: 

 𝐸(𝑥) = 𝑚𝑝TR, 

 Var(𝑥) = 𝑚𝑝TR(1 − 𝑝TR). 

∴ Var(𝑚̂) =̇
𝑚(1 − 𝑝TR)

𝑝TR
+ Var(𝑝̂TR) [

𝑚𝑝TR(1 − 𝑝TR) +𝑚2𝑝TR
2

𝑝TR
4 ]. (B4) 

Note: 

 Var(𝑝̂TR) =
𝑝TR(1−𝑝TR)

ℎ1
. 

∴ Var(𝑚̂) =̇
𝑚(1 − 𝑝TR)

𝑝TR
+
𝑚(1 − 𝑝TR)(𝑚𝑝TR − 𝑝TR + 1)

𝑝TR
2 ℎ1

 (B5) 

estimated by 

Var̂(𝑚̂) =̇
𝑚̂(1 − 𝑝̂TR)

𝑝̂TR
+
𝑚̂(1 − 𝑝̂TR)(𝑚̂𝑝̂TR − 𝑝̂TR + 1)

𝑝TR
2 ℎ1

. (B6) 

Note a similar approach can be used to estimate the variance of 𝑛̂1 in 2015. 
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Appendix 3. Memo from AYK SSI Expert Panel to ADFG following preliminary review of revised run-

reconstruction model following collaborative workshop between Expert Panel and ADFG to discuss 

original model limitations. Dated May 10, 2018. Please note that in this memo the panel referred to the 

‘original model’ as the ‘current model’. 

 

MEMO 

DATE:  May 10, 2018 

TO:  Zachary Liller, Research Coordinator, Arctic-Yukon-Kuskokwim Region, Alaska 

Department of Fish & Game, Division of Commercial Fisheries, Anchorage, Alaska 

FROM: Expert Panel to evaluate Kuskokwim River Chinook salmon run reconstruction and 

stock-recruit models commissioned by the Arctic-Yukon-Kuskokwim Sustainable Salmon 

Initiative (AYK-SSI). 

Daniel Schindler, Professor, University of Washington, School of Aquatic and Fishery 

Sciences 

Timothy Walsworth, Post-Doctoral Researcher, University of Washington, School of 

Aquatic and Fishery Sciences 

Milo Adkison, Professor, College of Fisheries and Ocean Sciences, University of Alaska 

Fairbanks 

Randall Peterman, Professor School of Resource and Environmental Management, 

Simon Fraser University 

André Punt, Professor, University of Washington, School of Aquatic and Fishery Sciences 

 

SUBJECT: Preliminary assessment of revised run reconstruction model for Chinook salmon in 

the Kuskokwim River 

 

Introduction 

Stocks of Chinook salmon returning to the Kuskokwim River are among the most abundant in Alaska but 

have shown downturns in the recent decade, resulting in closed commercial fisheries and hardship for 

subsistence fisheries in communities throughout the watershed. Stock assessments are particularly 

challenging in this large and remote river system because it is expensive and logistically difficult to detect 

and enumerate adult fish migrating from the ocean back to a complex network of spawning habitat 

distributed among the many tributaries of this river. A run reconstruction model is used by the Alaska 

Department of Fish & Game (ADF&G) to integrate among a variety of indices of abundance, including: 
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aerial surveys of spawning fish in headwater tributaries, counts of fish passing weirs on tributaries, and 

commercial catch rates in the lower river. Additionally, in some years, mark-recapture experiments are 

performed to estimate river-wide population abundance and provide a means for scaling from abundance 

indices to whole-system estimates in years where mark-recapture studies have not been done. 

In response to concerns from a variety of stakeholders about the performance of the ADF&G run 

reconstruction model, the Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative (AYK-SSI) commissioned 

an independent panel of experts (hereafter Expert Panel), with considerable experience in salmon ecology 

and stock assessment, to review the structure and performance of the ADF&G’s current published run 

reconstruction model (Bue et al 2012; hereafter ‘current model’). The Expert Panel was assembled in 2016 

and, combined with the work of a statistical analyst, initiated a collaborative review with the ADF&G to 

assess the performance of the current ADF&G run reconstruction model. 

The Expert Panel used two approaches to assess the performance of the ADF&G run reconstruction model 

for Chinook salmon on the Kuskokwim River: (1) fitting the run reconstruction model to the observed data 

supplied by ADF&G, but with various modifications to that model's structure, and (2) fitting ADF&G's 

current run reconstruction model, including modified versions of it, to simulated data sets where the 

parameter values and run sizes are specified to simulate alternative plausible states of nature for the 

Kuskokwim River. A limitation of examining model performance on observed data is that the true state of 

the system is never known, and so there is no way to assess whether the model is actually capturing the 

true underlying dynamics in the system. Simulations allow for testing the model under various scenarios 

while being able to compare model fits to true values (Hilborn and Walters 1992). 

The Expert Panel tested the current run reconstruction model in several ways to assess its sensitivity to 

the starting values for the parameters, to underlying assumptions about Chinook salmon population 

dynamics, and to the types and amounts of data used to estimate the model parameters. A thorough 

summary of these results will be available in a forthcoming Expert Panel Review expected to be completed 

in late May 2018. However, the primary conclusions of the Expert Panel were communicated at a 

collaborative workshop with ADF&G staff and their Kuskokwim River Interagency Chinook Salmon Run 

Reconstruction Model Development Team in March 2018, and a list of primary recommendations were 

made to improve model performance. In particular, the Expert Panel was concerned with: 

a) Lack of stability of the current run reconstruction model as demonstrated by its tendency to arrive 

at multiple solutions for the best values for the parameters of the model, depending on the 

starting values used in the model fitting process. Further investigation by the Expert Panel 

suggested that this instability derived from (1) an improperly specified harvest sub-model, and (2) 

over-parameterization of the escapement indices used to inform the model. 

 

b) Sensitivity of model estimates to inclusion of recent (2014-2017) mark-recapture data. The run 

reconstruction model produced substantially different estimates of historical run sizes when 

recent mark-recapture estimates were either used, or not, to anchor the run reconstruction 

effort. 

 

c) Error structure. The current model assumed a normal distribution for errors associated with the 

total run estimate derived from the mark-capture data and the Panel thought this would be better 

assumed to be log-normally distributed.  The current model assumed that errors associated with 
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the individual escapement indices were distributed according to a negative binomial distribution, 

and each individual index site was assigned its own over-dispersion parameter. The Panel 

concluded that these errors should instead be assumed to be log-normally distributed and that 

the variances should be pooled by index type (i.e., one describing weirs and one describing aerial 

survey sites) to reduce the model complexity. 

Following the Expert Panel's collaborative workshop in March 2018, ADF&G revised the run 

reconstruction model to account for several mutually agreed-upon revisions that the Panel suggested for 

improving model performance (Table 1).  

 

Table 1. Comparison between current and revised model structures for ADF&G Kuskokwim River Chinook 

salmon run reconstruction model, as of May 1, 2018. 

 

 

At the request of ADF&G, the Expert Panel performed a preliminary assessment of the performance of 

the revised run reconstruction model that was provided by ADF&G to the Panel on May 1, 2018. The 

purpose of this memo is to describe the results of this preliminary assessment. Given the short time frame, 

the Expert Panel was not able to perform an exhaustive assessment of the revised model but, instead, 

focused on a manageable number of critical concerns that emerged from the review of the current model 

as described above. For the purposes of this memo, we refer to the current model as the ‘current model’ 

and the revised model as the ‘revised model’. In reality, the core structure of these two models is 

fundamentally the same, but certain components have been revised in the new model provided on May 

1, 2018. 

Assessment of the revised model with historical observed data 

Model stability 

The revised model showed substantially improved stability compared to the current model as shown by 

less sensitivity to starting values for the initial run size (inset panels in Figure 1). While the current model 

settled on several local minima across the run reconstruction times-series (Figure 1 bottom panels), with 

and without the recent (2014-2017) mark-recapture data, the new model produced a single solution when 

all recent mark-recapture data were integrated into the run reconstruction (Figure 1, top right panel). The 

new model produced one renegade solution when the recent mark-recapture data were not used in the 

run reconstruction model (Figure 1, top left panel), but otherwise converged on a single solution.  

Based on these preliminary analyses, it appears that model stability was substantially improved by the 

combination of simplifying the error structure by pooling many of the parameters and changing the 

harvest component of the model. While the revised model still showed some worrisome local minima 

when recent mark-recapture data were not included (Fig. 1 top, left panel), the revisions seem to have 

Component Current Model Revised Model

Total Run Error Structure Normal Log-normal

Escapement Index Error Structure Negative Binomial Log-normal

Number of Escapement Error Parameters One for each index site (20 total) One for each type of index (2 total)

Harvest Component Saturating relationship with effort: Linear relationship with effort:

Catch ~ Run * (1-exp(-Effort*catchability)) Catch ~ Effort * catchability * Run
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distinctly improved model stability, particularly when recent (2014-207) mark-recapture data are used in 

the run reconstruction. For future revisions to the model, the Expert Panel strongly recommends that 

ADF&G conduct simulation tests such as these to determine whether the run reconstruction model is 

sensitive to starting conditions. That procedure would examine model fits across a range of starting 

parameter values to ensure that a global minimum is found. 

Influence of recent mark-recapture data 

Mark-recapture estimates of river-wide abundance are needed to scale up from the miscellaneous 

escapement indices (i.e., weirs and aerial surveys of tributaries), which are assumed to quantify relative 

trends in abundance, to river-wide estimates of abundance. The Expert Panel noted that the run 

reconstruction estimates derived from using the current model were highly sensitive to the inclusion of 

recent (2014-2017) mark-recapture estimates of total river-wide abundance. The revised model remains 

sensitive to the inclusion of these data (Figure 2), though to a lesser degree than the current model. While 

the historical changes in abundance estimated from the current and revised models, with differing 

numbers of years of mark-recapture data, all generally followed the same coarse-scale changes through 

time, there were some notable discrepancies produced in certain years. In particular, the revised model 

generally tended to estimate lower total abundance of Chinook salmon between 2014-2017 than the 

current model did without using recent mark-recapture data for those years, but about the same as when 

the current model was fit using those data (Figure 2). Regardless, these differences in estimates were 

relatively small.  The revised model also estimated the peak abundance observed in 1990s at more than 

400,000 Chinook salmon while the current model estimated abundances almost 50,000 fish lower.  

We further explored the sensitivity of the revised run reconstruction model to the inclusion of recent 

mark-recapture data by varying the number of years of mark-recapture data between 2014 and 2017 used 

in the run reconstruction. Given that there are no mark-recapture studies planned for 2018 and the 

following few years, this exercise is one way to assess how robust future estimates might be in years 

immediately following a series of mark-recapture estimates of river-wide abundance. 

From 2010 – 2017, the revised model using all mark-recapture estimates during 2014-2017 estimated 

between a high of 133.3 thousand fish in 2017 to a low of 79.4 thousand fish in 2012 (Table 2a, right 

panel). When all four years of recent mark-recapture data were used in the run reconstruction, the 

deviations of the current model from the revised model estimates tended to be <5%, except for in 2014 

when the current model estimated about 12% more fish in the river than was estimated by the revised 

model (Table 2, right panels).  

By comparison, when no new mark-recapture data were used, the current model tended to overestimate 

the number of fish in the river from 2010-2017 compared to estimates produced by the revised model 

with all mark-recapture data. The estimates produced from the current model without new mark-

recapture data tended to be <10% different from estimates with the revised model and all mark-recapture 

data. The one exception was 2014 when the current model estimated > 30% more fish than the revised 

model with all mark-recapture data. By comparison, the revised model without mark-recapture data 

produced estimates of total abundance that tended to be <5% different from estimates of the revised 

model fit with all of the mark-recapture data, except for in 2014 where the revised model without mark-

recapture data estimated about 14% more fish than the revised model with all the mark-recapture data. 

The large error in 2014 appears to have been produced by abnormally high counts at two of the weir sites. 
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Assuming that run-size estimates from the revised model with all recent mark-recapture data are the 

closest to the true values, estimation accuracy of ADF&G's revised model decreased as fewer years of 

mark-recapture data were included in the run reconstruction (Table 3). However, these deviations tended 

to be small, and were typically <5% different from estimates generated by the revised model with all years 

of mark-recapture data (Table 3b). The one exception to this pattern was in the revised model's estimates 

of total run size for 2014, when produced without using any mark-recapture data, or when only the most 

recent (2015-2017) three years of data were used. These estimates were about 13% higher (>10,000 fish) 

than the estimates produced by the revised model based on all the recent (2014-2017) mark-recapture 

data. When mark-recapture data were used starting in 2014 (Table 3, three right-most columns), 

deviations from the situation where all years of mark-recapture data were used were negligible (<3%). 

Thus, the revised model remains sensitive to the inclusion of recent mark-recapture data, but less so than 

the current model. The model is particularly sensitive to exclusion of mark-recapture from years with 

unusual escapement patterns (which drive large estimation errors, e.g., 2014), but these years are more 

likely to be captured when mark-recapture studies are undertaken with increasing frequency. Further, the 

model appears to provide robust estimates of river-wide abundance in the years immediately following a 

mark-recapture experiment, although the analyses we have used to quantify this are very preliminary 

 

Assessment of the revised model performance based on simulated data 

We used a simulation model (documented in detail in the Expert Panel's upcoming final report) to 

generate data that would produce a reasonable approximation to the dynamics observed in Chinook 

salmon in the Kuskokwim River. The simulation model assumed that there was considerable population 

structure such that the aggregate dynamics were composed of the sum of the dynamics of 40 individual 

stocks, 20 of which were monitored for escapement. Covariation among stocks was assumed to be 

relatively weak, as demonstrated by the lack of synchrony among annual weir counts and among aerial 

surveys. The model also simulated ‘productivity regimes’, whereby the per capita productivity at low 

population sizes could increase by 500% (or decrease by 80%) roughly every 20 years. The model then 

‘sampled’ the data at the intensity that has actually been performed in the Kuskokwim River over the last 

four decades (data become more sparse farther back in time; see Figure 4 x-axis). 

Because we know what the ‘real’ abundances are in the model simulations, we can assess how well 

ADF&G's revised and current run reconstruction models perform in capturing these values under a variety 

of assumptions about the nature of the population dynamics and the intensity of sampling. In particular, 

we were interested in the influence of mark-recapture studies on model performance, and how the 

presence of regime shifts in population productivity affected model performance. 

The revised model performed better than the current model in estimating the true abundance of Chinook 

salmon in simulated data (Figure 3); these improvements were particularly prominent in simulations 

where no new mark-recapture data were included in the run reconstructions. In the absence of regime 

dynamics and when no mark-recapture data were included, model performance (measured by the 

normalized root mean squared error, NRMSE) was substantially better for the revised model compared 

to the current model. However, with new mark-recapture data included, the difference in the NRMSE 

produced by the two models was negligible. In simulations with regime changes, the revised model 

performed about as well (as indicated by the NRMSE), regardless of whether new mark-recapture data 
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were included, and the frequency distributions of errors were only slightly wider in situations with regime 

shifts than without those shifts, regardless of whether new mark-recapture data were included in the run 

reconstructions (Figure 3). 

Inspection of time-series of the relative errors produced by the current and the revised model through 

time reinforces the conclusion that the performance of the revised model still depends on inclusion of 

recent mark-recapture data in the run reconstructions, but less so than the current model (Figure 4). As 

expected, the magnitude of the errors of model predictions increases as you proceed backwards through 

time and the coverage of escapement sampling decreases. Inclusion of recent mark-recapture data 

tended to reduce errors in the most recent decade of the analysis, though the revised model had distinctly 

smaller errors than the current model during the last decade for simulations where new mark-recapture 

data were not included in the run reconstruction. 

Summary 

Revisions to the ADF&G run reconstruction model for Chinook salmon on the Kuskokwim River appear to 

have remedied several of the primary concerns of the AYK-SSI Expert Panel. In particular, the revised 

model is far more stable than the current model, though its stability still depends on the inclusion of 

recent mark-recapture data for scaling up from individual abundance indices to river-wide abundance 

estimates. The revised model also appears to provide more accurate run estimates than the current 

model, particularly for years when no mark-recapture data are available for scaling up to river-wide 

abundances. More analyses are required to further assess how robust the model is, particularly in 

situations where abundance indices from tributary weirs or aerial surveys are omitted from the 

Kuskokwim monitoring program.  
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Figure 1. Run size estimates for Chinook salmon in the Kuskokwim River across a range of starting values 

from the revised run reconstruction model (top row) and current run reconstruction model (bottom row), 

and with different amounts of mark-recapture data available (no recent (2014-2017) estimates in left 

column, all recent estimates in right column). Semi-transparent grey lines represent individual model fits 

(out of 100 total). Black lines indicate stacked grey lines, representing repeated model convergence on 

the same values. Inset figures represent the negative log-likelihood values of model fits across the range 

of starting values of the run-size examined for the initial run size. 
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Figure 2. Point estimates of Kuskokwim River Chinook salmon run size using the current model (red and 

purple lines) and revised model (grey-scale lines) structures. The numbers in the legend following the 

model structure indicate the number of recent mark-recapture values used to fit the model (i.e., ‘Revised 

0’ is the revised model fit without any mark-recapture data from 2014-2017. ‘Revised 4’ is the revised 

model fit with mark-recapture data for four years, 2014-2017. ‘Revised 1' used only 2014 mark-recapture 

data, ‘Revised 2’ used only 2014 and 2015 mark-recapture data, and so on up through ‘Revised 4’.   

 

 

 

  



 

 
Independent Peer Review Panel  Page 122 

 

 

 

 

Figure 3. Boxplots of normalized root mean squared error (NRMSE) for Kuskokwim River Chinook salmon 

run reconstruction model fits to simulated data from an operating model under various biological 

scenarios and model structures.  Box plots show the distribution from 100 simulations. The colors 

represent model estimates from the revised model structure (orange, left-most of each pair) and current 

model structure (blue, right-most). Column labels describe which model was used (Revised, Current), 

whether or not new (2014-2017) mark-recapture estimates were used to fit the models (No NewMR, W/ 

NewMR), and whether or not the underlying population dynamics were subject to regime shifts (also 

indicated by grey background). 
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Figure 4. Median absolute values of relative error (expressed as proportional difference from the true 

value) through time in run reconstruction model estimates for 100 simulated time-series. Solid lines 

represent those in which the recent (2014-2017) mark-recapture estimates were not used in the run 

reconstruction model. Dashed lines represent scenarios in which the recent mark-recapture estimates 

were used in the run reconstruction model. Lines in orange shades represent results from the revised run 

reconstruction model, while blue shaded lines represent those from the current run reconstruction 

model. Darker shades of each color represent scenarios with population dynamics subject to regime shifts, 

while lighter shades represent scenarios without regime shifts. Numbers above x-axis indicate the number 

of escapement indices available each year, which are the same as in the real data set available for the 

Kuskokwim River.  
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Table 2. Comparisons of estimates of Kuskokwim River Chinook salmon abundance (run size in thousands 

of fish) from run reconstruction models using the revised and current model structures, and mark-

recapture estimates of river-wide abundances. (a) Point estimates of Chinook salmon abundance from 

each of the two models when there are no recent mark-recapture estimates used and when there are all 

four recent mark-recapture estimates used. Grey boxes indicate years in which mark-recapture estimates 

are available. (b) Proportional differences between model estimates from part (a) compared to the revised 

model estimates when all recent mark-recapture estimates are used in the run reconstruction. 

Proportional differences were calculated as [(run sizemodel i - run sizemodel j)/(run sizemodel j)], where model j 

is the analogous ‘revised model’ fit with all (2014-2017) mark-recapture data.  

 

 

 

 

 

  

a)

Year Revised Model Current Model Revised Model Current Model

2010 114.9 116.4 113.7 112.6

2011 115.7 122.3 114.3 117.7

2012 81.2 84.3 79.4 82.2

2013 86.0 84.8 85.0 83.5

2014 91.6 106.8 80.5 90.3

2015 131.3 134.4 124.4 126.1

2016 130.6 140.8 131.1 133.7

2017 138.3 136.1 133.3 133.1

b)

Year Revised Model Current Model Revised Model Current Model

2010 0.010 0.023 0.000 -0.010

2011 0.012 0.071 0.000 0.030

2012 0.022 0.061 0.000 0.035

2013 0.011 -0.003 0.000 -0.018

2014 0.139 0.327 0.000 0.123

2015 0.055 0.080 0.000 0.014

2016 -0.004 0.074 0.000 0.020

2017 0.037 0.021 0.000 -0.001

No Recent Mark-Recapture All Recent Mark-Recapture

No Recent Mark-Recapture All Recent Mark-Recapture
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Table 3. Comparisons of Kuskokwim River Chinook salmon run reconstruction estimates using the revised 

model structure and observed data, with different numbers of recent mark-recapture estimates available. 

(a) Point estimates of run size (thousands of fish) from the model fits with different numbers and 

arrangements of recent mark-recapture estimates used. Grey cells indicate years in which mark-recapture 

estimates were included in the run reconstruction. (b) Proportional differences (calculated as in Table 2) 

between all model estimates from (a) compared to the new model estimates when all recent mark-

recapture estimates were used in the run reconstruction. Blue shading indicates underestimates; red 

shading indicates overestimates. 

 

 

 

 

 

  

a)

No Estimates All Estimates

Year 0 1 2 3 4 3 2 1

2010 114.9 114.5 114.6 114.3 113.7 113.8 113.7 113.9

2011 115.7 115.2 115.3 115.0 114.3 114.4 114.2 114.4

2012 81.2 80.7 80.8 80.4 79.4 79.6 79.3 79.6

2013 86.0 85.7 85.7 85.5 85.0 85.1 85.0 85.1

2014 91.6 91.1 91.2 90.8 80.5 80.5 80.5 80.5

2015 131.3 130.4 130.6 124.4 124.4 124.4 124.4 128.6

2016 130.6 129.7 131.1 131.1 131.1 131.1 127.7 128.2

2017 138.3 133.3 133.3 133.3 133.3 135.5 135.0 135.5

b)

No Estimates All Estimates

Year 0 1 2 3 4 3 2 1

2010 0.010 0.007 0.008 0.005 0.000 0.001 -0.001 0.001

2011 0.012 0.008 0.009 0.006 0.000 0.001 -0.001 0.001

2012 0.022 0.015 0.017 0.012 0.000 0.002 -0.002 0.002

2013 0.011 0.008 0.009 0.006 0.000 0.001 -0.001 0.001

2014 0.139 0.132 0.134 0.128 0.000 0.000 0.000 0.000

2015 0.055 0.048 0.050 0.000 0.000 0.000 0.000 0.033

2016 -0.004 -0.010 0.000 0.000 0.000 0.000 -0.026 -0.022

2017 0.037 0.000 0.000 0.000 0.000 0.016 0.012 0.017

Later Estimates Earlier Estimates

Number of Recent Mark-Recapture Estimates Used

Later Estimates Earlier Estimates

Number of Recent Mark-Recapture Estimates Used
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Appendix 4. Computer code (R) for operating model used to generate simulated data for assessing 

performance of run-reconstruction models. 

#============================================================= 

# 

# Functions used in Operating Model for simulating  

#   population dynamics similar to those of the 

#   Kuskokwim Chinook salmon population, but accounting for  

#   sub-population dynamics 

# 

# Coded by: Timothy Walsworth, timothy.walsworth@usu.edu 

# 

#============================================================= 

 

#============================================================= 

# Load required libraries 

#============================================================= 

library(gtools) 

library(matrixcalc) 

library(mvtnorm) 

library(RColorBrewer) 

library(Matrix) 

library(R2admb) 

 

 

#============================================================= 

# Function to generate the simulated time series data. 

#   - Simulates population dynamics of npop sub-populations 

#   - Each sub-population has its own production function 

#   - Harvest is distributed proportionally among  
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#      sub-populations 

#   - Observations of escapement, harvest, and total run size 

#      are made with a specified amount of observation error 

# 

# Input parameters: 

# - npop: number of sub-populations 

# - nage: number of age classes 

# - nwk: number of weeks simulated for harvest dynamics 

# - nyr: number of years of data monitoring 

# - oberr: log-normal observation error sd for aerial surveys 

# - harvObsErr: log-normal sd of harvest observation error 

# - procerr: recruitment error log-normal sd 

# - rho: temporal autocorrelation in recruitment anomalies 

# - corrtype: type of sub-population correlation structure 

# - q: fishery catchability coefficient 

# - mrstd: mark-recapture CV 

# - tmrstd: total run mark recapture CV 

# - agevar: (T/F) is there variation in age-composition between brood-years? 

# - srtype: Shape of stock-recruit curve ("ricker" or "bevholt") 

# - random.timing: (T/F) is run-timing variable among years? 

# - lowpop: How many sub-populations in lower river? (Note: model currently 

#           does not do anything with this except when divying up weirs/surveys) 

# - outnames: names for output matrix 

# - decaymin: sets level of asynchrony among stocks (1= perfect synchrony, -1 -> mean cor = 0.29) 

# - regime.length: inverse of annual probability of regime change 

# - newmr: Include mark-recapture estimates from recent project? 

# - aerial.bias: are aerial surveys increasingly biased at larger escapements? 

# - varyEffort: randomly vary effort among years (to explore SR space better) 

# - mryrs: Which years use mrstd for mark-recap estimates> 
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# - tmryrs: Which years use tmrstd for mark-recap estimates? 

# - mrmn: 0 -> mark-recapture point estimate is the true run-size, 

#         1 -> mar-recapture point estimate is drawn from distribution around true value 

# - forecast: T/F: forecast annual harvest across rang eof harvest rates? 

# - regstr: multiplier for difference in productivity between low and high productivity regimes 

# - avar: T/F, is there variation in population productivity among populations? 

#====================================================================================

============= 

generate.time.series<-function(npop,nage,nwk,nyr,oberr, 

                               harvObsErr,procerr,rho,corrtype="none",q, 

                               mrstd,tmrstd,agevar=F,qvar=F,srtype="ricker",random.timing=F,lowpop=10, 

                               outnames,decaymn=0,regime.length,newmr=F,aerial.bias=F,varyEffort=F, 

                               mryrs,tmryrs,mrmn,forecast=F,regstr=2,avar=F) 

{ 

  # Read in Kusko data file in order to determine which weeks have harvest amd fishing effort 

  data_file2 <- 'Kusko_RR_Input_Data_April2018.csv' 

  kusko.data2 <- read.csv(data_file2,header=T, na.string='') 

  #========================================================================== 

  # Generate input files in order to determine which estimates are available 

  #  - Start Code from Hamazaki's R code for Kusko RR model 

  #========================================================================== 

  # Extract testfish data 

  testf<-kusko.data2[substr(names(kusko.data2),1,3)=='rpw'] 

  # combine week 8, 9 and 10 and drop  

  testf[,8] <- testf[,8]#+testf[,9]+testf[,10] 

  #testf <- testf[,-(9:10)] 

  # Replace NA to mean proporion for each week  

  for (i in 1:dim(testf)[2]) { 

    testf[is.na(testf[i]),i] <- colMeans(testf,na.rm=T)[i] 
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  } 

   

  

#####################################################################################

#### 

  #  2.3  Rearange fishing effort and harvest data catch 0 to NA                          #    

  

#####################################################################################

#### 

  # Extract weekly commercial effort data  

  ceff2 <-kusko.data2[substr(names(kusko.data2),1,3)=='cew'] 

  # combine week 8, 9  and drop  

  # ceff2[,6] <- ceff2[,6]+ceff2[,7] 

  ceff2 <- ceff2[,-7] 

   

  # Extract weekly commercial catch data 

  ccat2 <-kusko.data2[substr(names(kusko.data2),1,3)=='chw'] 

  # combine week 8, 9  and drop  

  # ccat2[,6] <- ccat2[,6]+ccat2[,7] 

  ccat2 <- ccat2[,-7] 

   

  # Extract weekly commercial est data 

  creg2 <-kusko.data2[substr(names(kusko.data2),1,3)=='cfw'] 

  # combine week 8, 9  and drop  

  creg2[,6] <- pmax(creg2[,6],creg2[,7]) 

  creg2 <- creg2[,-7] 

  creg2[creg2==4]<-1 

  #================================================================= 

  # End Code from Hamazaki's R code for Kusko RR model 

  #================================================================= 
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  # Generate Stock-recruit parameters for sub-stocks 

  if(srtype=="ricker"){ 

 

    alphas.hi<-3*regstr # High productivity regimes 

    if(avar) alphas.hi<-rnorm(npop,(3*regstr),(.45*regstr)) # Set population specific high productivity 

    alphas.lo<-3 # Low productivity regimes 

    if(avar) alphas.lo<-rnorm(npop,3,.45) # Set population specific low productivity 

    maxr<-rnorm(npop,25000,6000) # Maximum recruitment 

    aset<-sample(c(1,2),1) # Which regime to start in? 

    if(regime.length==0) aset<-1 # If no regime shifts, maintain same regime throughout simulation 

    alphas<-cbind(alphas.hi,alphas.lo)[,aset] # Select alpha parameters for regime 

    betas<-(alphas/maxr)*exp(-1) # Set betas based on max recruitment and productivity 

    srparmsmat<-cbind(alphas.hi,alphas.lo,betas) # Matrix of SR parameters by population 

  } 

   

  if(srtype=="bevholt"){ 

 

    alphas<-rnorm(npop,25000,6000) # Max recruitment 

    betaslo<-alphas/3 # Set low productivity regime beta 

    if(avar) betaslo<-alphas/rnorm(npop,3,.45) # Set population specific low productivity 

    betashi<-alphas/(3*regstr) # Set high productivity regime beta 

    if(avar) betashi<-alphas/rnorm(npop,(3*regstr),(.45*regstr)) # Set population specific high 

productivity 

    aset<-sample(c(1,2),1) # Which regime? 

    if(regime.length==0) aset<-1  # if no regime shifts, maintain same regime throughout 

    betasmat<-cbind(betashi,betaslo) # combine high and low productivity parameters into matrix 

    betas<-betasmat[,aset] # Select beta for current regime 

    srparmsmat<-cbind(alphas,betashi,betaslo) # Matrix of SR parmameters by populations 

    } 
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  # Generate productivity anomalies, declaring covariance structure among stocks 

  anomsout<-

generate.anoms(npop=npop,synchrony=corrtype,nyr=nyr+100,procerr=procerr,decaymin=decaymn) # 

generate anomalies 

  anoms<-anomsout[[1]] # productivity anomalies (rows = years, columns = stock) 

  spatialcorr<-anomsout[[2]] # covariance structure among stocks 

 

  

  # Generate Starting Data 

  # Matrix with returns, escapement, harvest, recruits, recruits by age 

  popmat<-array(NA,dim=c(nyr,4+nage+1,npop)) # Dim 1: Year, Dim 2: Data columns, Dim 3: Population 

ID  

  popmat[1:8,2,]<-exp(rnorm(8*npop,9,.5)) # Fill starting escapements from random normal distribution 

  # Columns of popmat for each population<-c("Ret","Esc","Harv","Rec","R5","R6","R7","R8",eps") 

  dimnames(popmat)<-list(c(seq(1,nyr)), 

                         c("Ret","Esc","Harv","Rec","R5","R6","R7","R8","eps"), 

                         c(seq(1:40))) 

   

  #selec<-c(.2,.8,1,1) # Age-specific selectivity of harvest 

  selec<-c(1,1,1,1) # Even selectivity across all return ages 

  if(!qvar){ 

    qmean<-q 

    q<-rep(q,nyr-8) # Catchability -> Constant through time 

  }  

  #q<-rnorm(nyr,q,q*0.1) # Time-varying catchability 

  if(qvar) { 

    qmean<-q 

    q<-runif(nyr-8,.75*qmean,1.25*qmean) 
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  } 

  TotBoats<-.5/qmean # Set effort level 

  if(varyEffort){ 

    TotBoats2<-as.matrix(runif(nyr-8,.5,3)*TotBoats,nrow=nyr,ncol=1) # Vary effort across years 

  }  

   

   

   

  harvdy<-array(NA,dim=c(nyr,8,npop,nwk)) # Store harvest data (Dim 1: Year, Dim 2: Harvest Metric, 

Dim 3: Population, Dim 4: Week) 

   

  for(i in 1:8) 

  {  

     

    # Are regime shifts being simulated? 

    if(regime.length!=0){ 

      if(sample(c(rep(0,regime.length-1),1),1)) # Does a regime shift occur this year? 

      { 

        # Switch productivity parameters if regime shift occurs 

        if(srtype=="ricker"){ 

          if(aset==1) alphas<-alphas.lo 

          else alphas<-alphas.hi 

          aset<-abs(aset-3) # Change indicator of regime from 1 to 2, or 2 to 1 

        } 

        if(srtype=="bevholt"){ 

          if(aset==1) betas<-betaslo 

          else betas<-betashi 

          aset<-abs(aset-3) # Change indicator of regime from 1 to 2, or 2 to 1 

        } 
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      } 

    } 

 

    # Generate and record Recruits for each spawning population 

    for(j in 1:npop) 

    { 

       

      sr<-rick(spawn=popmat[i,2,j],sig=procerr,a=alphas[j],b=betas[j],rho=rho, 

               last.eps=ifelse(i==1,0,popmat[i-1,9,j]),anom=anoms[i,j],srtype=srtype) # generate recruits for 

population j 

      popmat[i,4,j]<-sr[1] # Store recruits 

      popmat[i,9,j]<-sr[2] # Store recruitment anomaly 

 

      for(k in 1:nage) 

      { 

        popmat[i+k+4,k+4,j]<-age.comp(popmat[i,4,j],npop=1)[k] # Generate age composition for 

population k 

        if(!agevar) popmat[i+k+4,k+4,j]<-(c(.19,.38,.390,.04)*popmat[i,4,j])[k] # Generate age composition 

for population k without variation among years 

      } 

       

    } 

     

  } 

  ret.time<-matrix(NA,nrow=nyr-8,ncol=10) # Storage for return timing 

  effort.time<-matrix(NA,nrow=nyr-8,ncol=7) # Storage for effort timing 

  if(!random.timing){ # is return timing variable across years 

    ret.time<-matrix(returntime(npop=1),nrow=nyr-8,ncol=10,byrow=T) # Generate and store return 

timing 
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    effort.time<-matrix(effort(npop=1)*TotBoats,nrow=nyr-8,ncol=7,byrow=T)  # Generate and store 

effort timing 

     

    if(varyEffort) effort.time<-t(apply(TotBoats2,MARGIN=1,FUN=function(x) rep(x,7))) # IF effort varies 

widely across years, use that year's effort across all weeks 

 

    effort.time[(nyr-58):(nyr-18),][is.na(creg2) | creg2==0 |creg2==4]<- 0 # Only exert fishing effort during 

periods when real fishing effort was exerted 

     

  } 

 

  for(i in 9:(nyr-10)) 

  { 

    # Are regime shifts being simulated? 

    if(regime.length!=0){ 

      if(sample(c(rep(0,regime.length-1),1),1)) # Is there a regime shift this year? 

      { 

        # Switch productivity parameters if there is a regime shift 

        if(srtype=="ricker"){ 

          if(aset==1) alphas<-alphas.lo 

          else alphas<-alphas.hi 

          aset<-abs(aset-3) 

        } 

        if(srtype=="bevholt"){ 

          if(aset==1) betas<-betaslo 

          else betas<-betashi 

          aset<-abs(aset-3) 

        } 

      } 

    } 
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    # Across all sub-populations 

    for(j in 1:npop) 

    { 

      popmat[i,1,j]<-sum(popmat[i,5:8,j]) # Add up returns across ages 

       

      for(z in 1:nwk) 

      { 

        for(ageclass in 1:nage) 

        { 

           

          harvdy[i,ageclass,j,z]<-(ret.time[i-8,z+2]*popmat[i,4+ageclass,j])*(1-exp(-1*effort.time[i-

8,z]*q[i]*selec[ageclass])) # Calculate harvest by age and week 

          

        } 

         

      } 

       

      popmat[i,3,j]<-sum(harvdy[i,1:4,j,]) # Harvest total in year i, population j 

      popmat[i,2,j]<-popmat[i,1,j]-popmat[i,3,j] # Escapement total in year i, population j 

       

      sr<-rick(spawn=popmat[i,2,j],sig=procerr,a=alphas[j],b=betas[j], 

               rho=rho,last.eps=popmat[i-1,9,j],anom=anoms[i,j],srtype=srtype) # Calculate recruitment 

dynamics 

      popmat[i,4,j]<-sr[1] # Recruits from brood year i, population j 

      popmat[i,9,j]<-sr[2] # epsilon for AR1 process, year i, population j 

      agecomp<-age.comp(popmat[i,4,j],npop=1) # generate age composition for the current brood year 

      for(k in 1:nage) 
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      { 

        popmat[i+k+4,k+4,j]<-agecomp[k] # distribute recruits from brood year i among age-classes in 

respective return years 

        if(!agevar) popmat[i+k+4,k+4,j]<-(c(.19,.38,.390,.04)*popmat[i,4,j])[k] # Distribute recruits among 

age-classes when age composition is constant 

      } 

       

    } 

     

  } 

   

  #print("B") 

  obsmat<-array(NA,dim=c(nyr,12,npop)) # Storage for observations of the system 

   

  # obsmat columns: 1. Obsreturns, 2. ObsEscape, 3. ObsHarv, 4. ObsRecruits, 5:8. Obs Escape by age, 

9:12. Obs Harv by Age 

  # Store harvest data (Dim 1: Year, Dim 2: Harvest M,etric, Dim 3: Population, Dim 4: Week) 

   

  # Select sites for weirs and aerial indices (selects from lower and upper system, distributing weirs and 

aerials as in Kusko) 

  monitored<-

c(sample(c(rep(0,5),1,1,2,2,2),lowpop,replace=F),sample(c(rep(0,15),rep(1,4),rep(2,11)),npop-

lowpop,replace=F)) 

  aerial<-as.integer(monitored==2) # Which sites are aerial indices? 

  weir<-as.integer(monitored==1) # Which sites have weirs? 

   

  nweir<-sum(monitored==1) # How many populations have at least one weir index? 

  weirs<-which(monitored==1) # How many populations have at least one aerial index? 

  nair<-sum(monitored==2) # Number of weir index sites 

  air<-which(monitored==2) # number of aerial index sites 

  harvbyage<-array(NA,dim=c(nyr,nage,npop)) # Storage for harvest by age and population 
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  escbyage<-array(NA,dim=c(nyr,nage,npop)) # Storage for escapement by age and populations 

   

  for(z in 9:(nyr-10)) 

  { 

     

    for(i in 1:npop) 

    { 

       

      for(j in 1:nage) 

      { 

        escbyage[z,j,i]<-popmat[z,j+4,i]-(sum(harvdy[z,j,i,])) # Store escapement by age  

        harvbyage[z,j,i]<-(sum(harvdy[z,j,i,])) # Store harvest by age 

      } 

       

      if(i %in% weirs) { 

        obsmat[z,2,i]<-observe.weir(escape=popmat[z,2,i],obserr.weir=oberr*.2,weir=1,npop=1) # 

Generate escapement "observations" at weir locations 

       

      } 

       

       

      # Generate escapement "observations" at aerial survey locations 

      if(i %in% air) obsmat[z,2,i]<-

observe.aerial(escape=popmat[z,2,i],obserr.aerial=oberr,aerial=1,npop=1,aerialbias=aerial.bias)  

 

       

      obsmat[z,3,i]<-popmat[z,3,i]*exp(rnorm(1,-1*(harvObsErr^2/2),harvObsErr)) # Store observed 

harvest 

      obsmat[z,1,i]<-obsmat[z,2,i]+obsmat[z,3,i] # Store observed harvest + obsrved escapement 
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    } 

     

  } 

   

  modintab<-matrix(NA,nrow=nyr-8,ncol=75) # Create storage for output matrix 

   

  # Set column headers for output matrix 

  if(length(outnames)==58) 

  { 

    newcolnames<-c(outnames[1:3],"NoUSE",outnames[c(4:7)],rep("NOUSE",4),outnames[c(8:58)], 

                   "Age4Harvest","Age5Harvest","Age6Harvest","Age7Harvest","TRUE Run", 

                          "Age4Esc","Age5Esc","Age6Esc","Age7Esc","Returns","KuskoEsc","Effort") 

    colnames(modintab)<-newcolnames 

     

  } 

  else colnames(modintab)<-

c(outnames,"Age4Harvest","Age5Harvest","Age6Harvest","Age7Harvest","TRUE Run", 

                             "Age4Esc","Age5Esc","Age6Esc","Age7Esc","Returns","KuskoEsc", "Effort") 

   

   

  for(i in 1:(nyr-8)) 

  { 

    modintab[i,73]<-sum(popmat[i+8,4,]) # Recruits 

    modintab[i,74]<-sum(popmat[i+8,2,]) # Escapement 

    modintab[,75]<-TotBoats2[9:nyr] # Effort 

    modintab[i,68]<-sum(popmat[i+8,1,]) # Returns 

    modintab[i,1]<-i # Year number 

     

    modintab[i,2]<-sum(popmat[i+8,3,])*.1 # Harvest.up 
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    modintab[i,3]<-sum(popmat[i+8,3,])*.9 # Harvest.low 

    modintab[i,4]<-NA # H. Sub.I 

    modintab[i,5]<-NA # H.Sports 

    modintab[i,6]<-sum(popmat[i+8,3,])*.00 # H.Test 

     

    for(j in 1:nage) 

    { 

      modintab[i,(63+j)]<-sum(harvbyage[i+8,j,])/sum(harvbyage[i+8,,]) # Proportional harvest by age 

    } 

    for(j in 1:nage) 

    { 

      modintab[i,(68+j)]<-sum(escbyage[i+8,j,])/sum(escbyage[i+8,,]) # Proportional Escapement by Age 

    } 

 

    if(i %in% tmryrs){ 

      lcv<-log(tmrstd^2+1) # log cv 

      modintab[i,8]<- tmrstd*sum(popmat[i+8,1,]) # tmr.sd 

      modintab[i,7]<- (mrmn*sum(popmat[i+8,1,])*exp(rnorm(1,-lcv^2/2,sqrt(lcv))))+(((1-

mrmn)*sum(popmat[i+8,1,]))) # tmr 

      modintab[i,9]<- NA # Sonar 

      modintab[i,10]<- NA # Sonar.sd 

    } 

     

    if(i %in% mryrs) 

    { 

      firstup<-lowpop+1 # Not used currently; would be incorporated if upper and lower 

harvest/escapement dynamics are incorporated 

      lcv<-log(mrstd^2+1) # log CV 

      modintab[i,8]<-mrstd*sum(popmat[i+8,1,]) #changed from saving in column 12; removed firstup:40 

from third index 
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      modintab[i,7]<-(mrmn*sum(popmat[i+8,1,])*exp(rnorm(1,(-1*(lcv)^2)/2,sqrt(lcv))))+((1-

mrmn)*sum(popmat[i+8,1,])) # All years actual run size; changed from saving in column 11 

       

    } 

 

    # Columns 13-18 are weir indices of escapement 

    for(j in 1:nweir){ 

      pop<-weirs[j] # which subpopulation to index? 

      modintab[i,12+j]<-obsmat[i+8,2,pop] # Weir escapement 

    } 

     

    # Columns 19-32 are aerial indices of escapement 

    for(j in 1:nair){ 

      pop<-air[j] # which sub-population to index? 

      modintab[i,18+j]<-obsmat[i+8,2,pop] # Aerial escapement 

    } 

     

    # Columns 33-42 are proportional return times for each year 

    modintab[i,33:42]<-ret.time[i,] # Proportion of run returning in week x 

     

    # columns 41,44,47,50,53,56,59 are Fishing  harvest in week x 

    for(j in 1:nwk) 

    { 

      modintab[i,(40+3*j)]<-sum(harvdy[i+8,1:4,,j]) # Harvest by week across all ages and populations and 

fisheries 

    } 

     

    # Columns 42,45,48,51,54,57,60 are effort in week x 

    for(j in 1:nwk) 
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    { 

      modintab[i,(41+3*j)]<-effort.time[i,j] # effort by week 

    } 

     

    # columns 43,46,49,52,55,58,61 are FIshing regulation in week x 

    for(j in 1:nwk) 

    { 

      modintab[i,(42+3*j)]<-1 #Fishing regulation by week (only one regulation simulated) 

    } 

     

  } 

  substock.runs<-popmat[,1,] # Substock run dynamics 

  substock.esc<-popmat[,2,] # Sub-stock escapement dynamics 

   

  #============================================ 

  # Forecast 50 years across harvest rates 

  if(forecast) 

  { 

 

    TotBoats3<- matrix(rep((-1*log(1-seq(.01,.99,by=.01))/q[1]),110),nrow=110,ncol=99,byrow=T) #Matrix 

of effort for different harvest scenarios 

    popmat.f<-array(NA,dim=c(118,4+nage+1,npop,99)) # 4d array for storing population forecast output  

    harvdyf<-array(NA,dim=c(110,8,npop,nwk,99)) # 4d matrix for storing harvest dynamics forecast 

output 

    harvbyagef<-array(NA,dim=c(110,nage,npop,99)) # Storage for harvest by age and population 

    escbyagef<-array(NA,dim=c(110,nage,npop,99)) # Storage for escapement by age and populations 

    obsmatf<-array(NA,dim=c(110,12,npop,99)) # Storage for observations of the system 

    harvbyagef<-array(NA,dim=c(110,nage,npop,99)) # Storage for harvest by age and population 

    escbyagef<-array(NA,dim=c(110,nage,npop,99)) # Storage for escapement by age and populations 
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    substock.runsf<-array(NA,dim=c(118,npop,99)) # storage for forecast substock run dynamics 

    substock.escf<-array(NA,dim=c(118,npop,99)) # storage for forecast substock escapement dynamics 

    ret.timef<-matrix(NA,nrow=110,ncol=10) # Storage for return timing 

    effort.timef<-TotBoats3 # Storage for effort timing 

    if(!random.timing){ # is return timing variable across years 

      ret.timef<-matrix(returntime(npop=1),nrow=110,ncol=10,byrow=T) # Generate and store return 

timing 

      

    } 

     

    for(vv in 1:99) 

    { 

      popmat.f[1:16,,,vv]<-popmat[(nyr-17):(nyr-2),,] # Set initial conditions for all forecast simulations 

    } 

    modintabf<-array(NA,dim=c(110-8,75,99)) # Create storage for output matrix 

                      

    # Set column headers for output matrix 

    if(length(outnames)==58) 

    { 

      newcolnames<-c(outnames[1:3],"NoUSE",outnames[c(4:7)],rep("NOUSE",4),outnames[c(8:58)], 

                     "Age4Harvest","Age5Harvest","Age6Harvest","Age7Harvest","TRUE Run", 

                     "Age4Esc","Age5Esc","Age6Esc","Age7Esc","Returns","KuskoEsc","Effort") 

      colnames(modintabf)<-newcolnames 

       

    } 

    else colnames(modintabf)<-

c(outnames,"Age4Harvest","Age5Harvest","Age6Harvest","Age7Harvest","TRUE Run", 

                                "Age4Esc","Age5Esc","Age6Esc","Age7Esc","Returns","KuskoEsc", "Effort") 
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    if(regime.length !=0) regimetimes<-sample(c(rep(0,regime.length-1),1),110,replace=T) # Generate 

vector of regime switch points 

     

    for(v in 1:99) 

    { 

      for(t in 9:110) 

      { 

          set.seed(1) 

          # Are regime shifts being simulated? 

          if(regime.length!=0){ 

            #if(sample(c(rep(0,regime.length-1),1),1)) # Is there a regime shift this year? 

            if(regimetimes[t])   

            { 

              # Switch productivity parameters if there is a regime shift 

              if(srtype=="ricker"){ 

                if(aset==1) alphas<-alphas.lo 

                else alphas<-alphas.hi 

                aset<-abs(aset-3) 

              } 

              if(srtype=="bevholt"){ 

                if(aset==1) betas<-betaslo 

                else betas<-betashi 

                aset<-abs(aset-3) 

              } 

            } 

          } 

           

           

          # Across all sub-populations 
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          for(j in 1:npop) 

          { 

            popmat.f[t,1,j,v]<-sum(popmat.f[t,5:8,j,v]) # Add up returns across ages 

             

            for(z in 1:nwk) 

            { 

              for(ageclass in 1:nage) 

              { 

                 

                harvdyf[t,ageclass,j,z,v]<-(ret.timef[t-8,z+2]*popmat.f[t,4+ageclass,j,v])*(1-exp(-

1*effort.timef[t-8,v]*q[t]*selec[ageclass])) # Calculate harvest by age and week 

                 

              } 

               

            } 

             

            popmat.f[t,3,j,v]<-sum(harvdyf[t,1:4,j,,v]) # Harvest total in year i, population j 

            popmat.f[t,2,j,v]<-popmat.f[t,1,j,v]-popmat.f[t,3,j,v] # Escapement total in year i, population j 

             

            sr<-rick(spawn=popmat.f[t,2,j,v],sig=procerr,a=alphas[j],b=betas[j], 

                     rho=rho,last.eps=popmat.f[t-1,9,j,v],anom=anoms[t,j],srtype=srtype) # Calculate recruitment 

dynamics 

            popmat.f[t,4,j,v]<-sr[1] # Recruits from brood year i, population j 

            popmat.f[t,9,j,v]<-sr[2] # epsilon for AR1 process, year i, population j 

            agecomp<-age.comp(popmat.f[t,4,j,v],npop=1) # generate age composition for the current brood 

year 

            for(k in 1:nage) 

            { 

              popmat.f[t+k+4,k+4,j,v]<-agecomp[k] # distribute recruits from brood year i among age-classes 

in respective return years 
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              if(!agevar) popmat.f[t+k+4,k+4,j,v]<-(c(.19,.38,.390,.04)*popmat.f[t,4,j,v])[k] # Distribute recruits 

among age-classes when age composition is constant 

            } 

             

          } 

           

        } 

         

 

         

        for(z in 9:110) 

        { 

           

          for(i in 1:npop) 

          { 

             

            for(j in 1:nage) 

            { 

              escbyagef[z,j,i,v]<-popmat.f[z,j+4,i,v]-(sum(harvdyf[z,j,i,,v])) # Store escapement by age  

              harvbyagef[z,j,i,v]<-(sum(harvdyf[z,j,i,,v])) # Store harvest by age 

            } 

             

            if(i %in% weirs) { 

              obsmatf[z,2,i,v]<-observe.weir(escape=popmat.f[z,2,i,v],obserr.weir=oberr*.2,weir=1,npop=1) # 

Generate escapement "observations" at weir locations 

               

            } 
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            # Generate escapement "observations" at aerial survey locations 

            if(i %in% air) obsmatf[z,2,i,v]<-

observe.aerial(escape=popmat.f[z,2,i,v],obserr.aerial=oberr,aerial=1,npop=1,aerialbias=aerial.bias)  

             

             

            obsmatf[z,3,i,v]<-popmat.f[z,3,i,v]*exp(rnorm(1,-1*(harvObsErr^2/2),harvObsErr)) # Store 

observed harvest 

            obsmatf[z,1,i,v]<-obsmatf[z,2,i,v]+obsmatf[z,3,i,v] # Store observed harvest + obsrved 

escapement 

             

          } 

           

        } 

         

 

        for(i in 1:(110-8)) 

        { 

          modintabf[i,73,v]<-sum(popmat.f[i+8,4,,v]) # Recruits 

          modintabf[i,74,v]<-sum(popmat.f[i+8,2,,v]) # Escapement 

          modintabf[,75,v]<-TotBoats3[9:110] # Effort 

          modintabf[i,68,v]<-sum(popmat.f[i+8,1,,v]) # Returns 

          modintabf[i,1,v]<-i # Year number 

           

          modintabf[i,2,v]<-sum(popmat.f[i+8,3,,v])*.1 # Harvest.up 

          modintabf[i,3,v]<-sum(popmat.f[i+8,3,,v])*.9 # Harvest.low 

          modintabf[i,4,v]<-NA # H. Sub.I 

          modintabf[i,5,v]<-NA # H.Sports 

          modintabf[i,6,v]<-sum(popmat.f[i+8,3,,v])*.00 # H.Test 

           

          for(j in 1:nage) 
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          { 

            modintabf[i,(63+j),v]<-sum(harvbyagef[i+8,j,,v])/sum(harvbyagef[i+8,,,v]) # Proportional harvest 

by age 

          } 

          for(j in 1:nage) 

          { 

            modintabf[i,(68+j),v]<-sum(escbyagef[i+8,j,,v])/sum(escbyagef[i+8,,,v]) # Proportional 

Escapement by Age 

          } 

           

          if(i %in% tmryrs){ 

            lcv<-log(tmrstd^2+1) 

            modintabf[i,8,v]<- tmrstd*sum(popmat.f[i+8,1,,v]) # tmr.sd 

            modintabf[i,7,v]<- (mrmn*sum(popmat.f[i+8,1,,v])*exp(rnorm(1,-lcv^2/2,sqrt(lcv))))+(((1-

mrmn)*sum(popmat.f[i+8,1,,v]))) # tmr 

            modintabf[i,9,v]<- NA # Sonar 

            modintabf[i,10,v]<- NA # Sonar.sd 

          } 

           

          if(i %in% mryrs) 

          { 

            firstup<-lowpop+1 # Not used currently; would be incorporated if upper and lower 

harvest/escapement dynamics are incorporated 

            lcv<-log(mrstd^2+1) # log CV 

            modintabf[i,8,v]<-mrstd*sum(popmat.f[i+8,1,,v]) #changed from saving in column 12; removed 

firstup:40 from third index 

            modintabf[i,7,v]<-(mrmn*sum(popmat.f[i+8,1,,v])*exp(rnorm(1,(-1*(lcv)^2)/2,sqrt(lcv))))+((1-

mrmn)*sum(popmat.f[i+8,1,,v])) # All years actual run size; changed from saving in column 11 

 

          } 
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          # Columns 13-18 are weir indices of escapement 

          for(j in 1:nweir){ 

            pop<-weirs[j] # which subpopulation to index? 

            modintabf[i,12+j,v]<-obsmatf[i+8,2,pop,v] # Weir escapement 

          } 

           

          # Columns 19-32 are aerial indices of escapement 

          for(j in 1:nair){ 

            pop<-air[j] # which sub-population to index? 

            modintabf[i,18+j,v]<-obsmatf[i+8,2,pop,v] # Aerial escapement 

          } 

           

          # Columns 33-42 are proportional return times for each year 

          modintabf[i,33:42,v]<-ret.timef[i,] # Proportion of run returning in week x 

           

          # columns 41,44,47,50,53,56,59 are Fishing  harvest in week x 

          for(j in 1:nwk) 

          { 

            modintabf[i,(40+3*j),v]<-sum(harvdyf[i+8,1:4,,j,v]) # Harvest by week across all ages and 

populations and fisheries 

          } 

           

          # Columns 42,45,48,51,54,57,60 are effort in week x 

          for(j in 1:nwk) 

          { 

            modintabf[i,(41+3*j),v]<-effort.timef[i,v] # effort by week 

          } 

           

          # columns 43,46,49,52,55,58,61 are FIshing regulation in week x 
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          for(j in 1:nwk) 

          { 

            modintabf[i,(42+3*j),v]<-1 #Fishing regulation by week (only one regulation simulated) 

          } 

           

        } 

        substock.runsf[,,v]<-popmat.f[,1,,v] # Substock run dynamics 

        substock.escf[,,v]<-popmat.f[,2,,v] # Sub-stock escapement dynamics 

      } 

       

    } 

     

  if(!forecast)return(list("Summary" = modintab,"SubStock"= substock.runs,"Weirs" = weirs,"Aerial" = air, 

                           "SiteCorr"=spatialcorr,"TrueEsc"=substock.esc)) 

  if(forecast) return(list("Summary" = modintab,"SubStock"= substock.runs,"Weirs" = weirs,"Aerial" = air, 

              "SiteCorr"=spatialcorr,"TrueEsc"=substock.esc,"SRParms"=srparmsmat,"SRSims"=modintabf, 

              "SRSimRuns"=substock.runsf,"SRSimsEsc"=substock.escf)) 

} 

 

#========================================================================== 

# Function to generate recruits from a spawning population 

# 

# Parameters: 

# - spawn: number of spawners 

# - sig: process error in recruitment 

# - a: alpha parameter 

# - b: beta parameter 

# - rho: temporal autocorrelation in recruitment 

# - last.eps: last time step recuitment anomaly 
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# - anom: recruitment anomaly 

# - srtype: Shape of stock-recruit curve ("ricker" or "bevholt") 

#========================================================================== 

rick<-function(spawn,sig,a,b,rho,last.eps,anom,srtype="ricker") 

{ 

  eps<-rho*last.eps+sqrt(1-rho^2)*anom # generate temporal autocorrelation component 

   

  if(srtype=="ricker"){ 

    lrs<-log(a)+b*spawn+eps*sig-(sig^2)/2 # Generate log(recruits per spawners) 

    rec<-exp(lrs)*spawn # Generate recruits from lrs 

  }   

   

  if(srtype=="bevholt"){ 

    rec<-((a*spawn)/(b+spawn))*exp(eps*sig-(sig^2)/2) # Generate recruits 

     

  } 

  return(list=c(rec,eps)) # return recruits and temporal autocorrelation component 

   

} 

 

 

#=================================================================== 

# Function to generate age composition from Dirichlet distribution 

# 

# Parameters: 

# - recruits: number of recruits from brood year 

# - npop: number of populations 

#=================================================================== 

age.comp<-function(recruits,npop) 
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{ 

  age<-rdirichlet(npop,c(.19,.38,.390,.04)*137) # generate age-composition from dirichlet 

  recclasses<-round(age*recruits) # generate recruitment by age class 

  return(recclasses) # return recruits by age classes 

} 

 

#=================================================================== 

# Function to generate return timing 

# 

# Parameters: 

# - npop: number of populations 

#=================================================================== 

returntime<-function(npop) 

{ 

  timing<-rdirichlet(npop,c(.006,.07,.186,.286,.225,.128,.052,.025,.011,.011)*75) #generate return timing 

proportions 

  return(timing) # return salmon return timing proportions 

} 

 

#=================================================================== 

# Function to generate weekly fishing effort multipliers. These 

#   values are multiplied by the annual effort level to determine 

#   weekly effort. Note: not currently used in simulations 

# 

# Parameters: 

# - npop: number of populations (set to one, as harvest affects 

#         all populations proportionally to their abundance) 

#=================================================================== 

effort<-function(npop=1) 
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{ 

 

  eff<-rlnorm(7,-.2,.4)# Draw log-normal multiplier values for each week of harvest 

  eff<-eff[order(eff)][c(4,5,7,6,3,2,1)] # Order the values to emulate true harvest dynamics 

  return(eff) 

} 

 

#================================================================ 

# Function to generate time-series of recruitment anomalies for 

#   subpopulations with different correlation structures. 

# Note: Currently do not use the "perfect" structure, as these 

#       dynamics can be produced with the "expdecay" structure 

#       when decaymin = 1 

# 

# Parameters: 

# - npop: number of populations 

# - synchrony: type of synchrony among populations (Use "expdecay") 

# - nyr: number of years to simulate 

# - procerr: sd of recruitment error 

# - decaymin: minimum correlation among sub-populations 

#================================================================= 

generate.anoms<-function(npop,synchrony=c("none","perfect","expdecay"),nyr,procerr,decaymin=0) 

{ 

 

  if(synchrony=="expdecay") 

  { 

 

    lindec<-(seq(1,decaymin,length=npop)) # sequence declining linearly from 1 to decaymin 

    ma<-matrix(0,nrow=npop,ncol=npop) # storage matrix for correlation matrix 
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    ma[,1]<-lindec # Linear decline in column 1 

    for(i in 2:npop){ 

      ma[-c(1:(i-1)),i]<-lindec[1:(npop-(i-1))] # Fill in lower triangle 

    } 

    ma<-ma+t(ma)-diag(nrow(ma)) # fill in upper triangle -> correlation matrix 

    sds<-rep(procerr,npop) # standard deviations 

    b<-sds%*%t(sds) 

    spatialcorr<-b*ma # generate covariance matrix 

 

    anoms<-rmvnorm(nyr,mean=(-1*diag(spatialcorr)/2),sigma=spatialcorr) # draw mvnorn samples from 

covariance matrix 

     

  } 

   

  if(synchrony=="perfect") 

  { 

    anoms<-rnorm(nyr,mean=(-1*procerr^2/2),sd=procerr) # generate one anomaly per year 

    anoms<-matrix(anoms,nrow=nyr,ncol=npop,byrow=F)    # apply this anomaly to all populations 

    spatialcorr<-NA 

  } 

   

  if(synchrony=="none") 

  { 

    anoms<-matrix(rnorm(nyr*npop,mean=(-1*procerr^2/2),sd=procerr),nrow=nyr,ncol=npop,byrow=F) 

# draw one anomaly per population per year 

    spatialcorr<-NA 

  } 

  return(list(anoms,spatialcorr)) # return anomalies matrix, and spatial covariance matrix 
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} 

 

 

#====================================================================================

=== 

# Function to generate observations of escapement at weir sites 

# 

# Parameters: 

# - escape: True escapement from operating model 

# - obserr.wier: log-normal standard deviation of observation error on weir indices 

# - weir: vector indicating which sites have weirs 

# - npop: number of populations 

#====================================================================================

=== 

observe.weir<-function(escape,obserr.weir,weir,npop=npop){ 

  err<-rnorm(npop,-obserr.weir^2/2,obserr.weir) # generate observation error in log space 

  obsesc<-escape*exp(err)*weir # multiply true escapement by observation error for weir sites 

  return(obsesc) 

} 

 

#====================================================================================

=== 

# Function to generate observations of escapement at aerial survey sites 

#   -expansion factor taken from Eggers et al. 2012 ADFG Escapement Report 

#   - aerial bias parameter values from Figure 8 of Jones et al 1998 NAJFM 

# Parameters: 

# - escape: True escapement from operating model 

# - obserr.aerial: log-normal standard deviation of observation error on aerial indices 

# - aerial: vector indicating which sites have aerial surveys 

# - npop: number of populations 
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# - aerialbias: (T/F) are aerial indices increasingly biased at higher escapements 

#====================================================================================

=== 

observe.aerial<-function(escape,obserr.aerial,npop,aerial,aerialbias=F){ 

  obsesc<-(escape/2.47)*exp(rnorm(npop,(-obserr.aerial^2/2),obserr.aerial))*aerial # generate aerial 

index by adding log-normal observation error 

                                                                                   #    to a constant proportion of the trueescapement 

  if(aerialbias) obsesc<- exp(0.59)*(escape^0.83)*exp(rnorm(npop,(-

(obserr.aerial^2)/2),obserr.aerial))*aerial # generate aerial index by adding log-normal observation error 

                                                                                                               #    to an increasingly negatively biased 

proportion of the true escapement 

  return(obsesc) 

} 
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Appendix 5. ADMB code for current run-reconstruction model (‘R model’). 

//============================================================ 

// Converting Alaska Department of Fish and Game 

//   Kuskokwim River Chinook salmon R-based run-reconstruction 

//   model into ADMB (“original model” 

// 

// Model by Hamachan Hamazaki 

// 

// Transferred to ADMB by Tim Walsworth (tewals@uw.edu) 

//============================================================ 

 

//========================================================== 

//DATA SECTION 

//========================================================== 

DATA_SECTION 

  init_int nyear; // number of years with data 

  init_int nweek; // number of weeks for harvest data 

  init_int nweir; // number of weir sites 

  init_int nair;  // number of aerial survey sites 

 

  init_matrix testf(1,nyear,1,nweek); //Estimates of run proportion by 

week 

 

  init_matrix ceff(1,nyear,1,nweek);  // Weekly effort commercial fishery 

  init_matrix ccat(1,nyear,1,nweek);  // Weekly catch commercial fishery 

  init_matrix creg(1,nyear,1,nweek);  // Weekly indicator of fishery 

regulation 

   

  init_vector inriv(1,nyear);         // Annual in-river run estimate 

  init_vector inriv_sd(1,nyear);      // SD of annual in-river run 

estimate 

 

  init_vector tcatch(1,nyear);          // Total harvest across all 

fishery sectors 

  init_matrix esc_w(1,nyear,1,nweir);   // Weir escapement indices 

  init_matrix esc_a(1,nyear,1,nair);    // Aerial escapement indices 

 

 // init_vector minesc(1,nyear);             // Minimum annual escapement 

  init_vector minrun(1,nyear);             // Minimum annual run size 

  init_vector ubrun(1,nyear);              // Upper bounds for annual run 

size estimation 

// cout <<"Data Section Complete"<<endl; 

 

 

//===================================================== 

// Parameter Section 

//===================================================== 

PARAMETER_SECTION 

  init_bounded_number_vector log_trun(1,nyear,minrun,ubrun,1);  // log 

drainage-wide run 

  init_bounded_vector log_wesc(1,nweir,2,7,1);   // log slope for weir 

counts 
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  init_bounded_vector log_aesc(1,nair,3,8,1);    // log slope for aerial 

counts 

  init_bounded_vector log_q(1,3,-14,-5,1);        // log Catchability for 

different fishery sectors 

  init_bounded_vector log_rw(1,nweir,-3,5,1);    // log overdispersion for 

weir counts //upper bound was 10 

  init_bounded_vector log_ra(1,nair,-3,5,1);     // log overdispersion for 

aerial counts //upper bound was 10 

 

  vector t_run(1,nyear);               // storage for untransformed total 

runs 

  vector wesc(1,nweir);                // storage for untransformed weir 

escapement slopes 

  vector aesc(1,nair);                 // storage for untransformed aerial 

escapement slopes 

  vector q(1,3);                       // storage for untransformed 

catchabilities 

  vector rw(1,nweir);                  // storage for untransformed weir 

overdispersion parameters 

  vector ra(1,nair);                   // storage for untransformed aerial 

overdispersion parameters 

  matrix wk_est(1,nyear,1,nweek);      // storage matrix for the estimated 

number of fish available for harvest each week 

  number tfw;                           // likelihood for weir counts 

  number tfa;                           // likelihood for aerial counts 

  number tfc1;                          // likelihood for catch data gear 

1 

  number tfcpart1;                       

  number tfc2;                          // likelihood for catch data gear 

2 

  number tfcpart2; 

  number tfc3;                          // likelihood for catch data gear 

3 

  number tfcpart3; 

  number tft;                          // likelihood for in-river run 

estimates 

  vector esc(1,nyear);                 // vector of total escapement 

estimates 

 

  objective_function_value objf; 

// cout <<"Parameter Section Complete"<<endl; 

 

INITIALIZATION_SECTION 

  log_trun  12.5; 

  log_wesc  5.0; 

  log_aesc  4.0; 

  log_q  -11.0; 

  log_rw  1.0; 

  log_ra  1.0; 

 

// cout <<"Initialization Section Complete"<<endl; 

 

 

//======================================================== 
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// Procedure Section 

//======================================================= 

PROCEDURE_SECTION 

 

  objf = 0.0; 

   

  convert_parameters_into_rates(); 

//cout<<"Convert Parameters Complete"<<endl; 

 

  evaluate_obj_func(); 

// cout<<"Evaluate Objective Function Complete"<<endl; 

 

RUNTIME_SECTION 

  maximum_function_evaluations 200000000 

  convergence_criteria 1.e-30   

 

 

//======================================================== 

// Function convert_parameters_into_rates 

//======================================================== 

FUNCTION convert_parameters_into_rates 

 

   t_run=exp(log_trun); 

   wesc=exp(log_wesc); 

   aesc=exp(log_aesc); 

   q=exp(log_q); 

   rw=exp(log_rw); 

   ra=exp(log_ra); 

 

 

 

//======================================================== 

// Function evaluate_obj_func 

//======================================================== 

FUNCTION evaluate_obj_func 

   int i,j,k,l,ctr1,ctr2,ctr3; 

    

   // Initialize values 

   tfw= 0.0; 

   tfa= 0.0; 

   tft= 0.0; 

   tfcpart1=0.0; 

   tfc1=0; 

   tfcpart2=0.0; 

   tfc2=0; 

   tfcpart3=0.0; 

   tfc3=0; 

   ctr1=0; 

   ctr2=0; 

   ctr3=0; 

    

   for (i=1;i<=nyear;i++) 

   { 

    esc(i)=t_run(i)-tcatch(i); // calculate escapement 



 

 
Independent Peer Review Panel  Page 159 

 

 

    if(inriv(i)>0) 

    { 

     tft+=  0.5*square((inriv(i))-(t_run(i)))/(square(inriv_sd(i))); // 

In-River run estimate likelihood 

    } 

 

    // Weir likelihoods 

    for(j=1;j<=nweir;j++) 

    { 

       if(esc_w(i,j)>0) 

       { 

         tfw+= -1*(gammln(esc_w(i,j)+rw(j))-gammln(esc_w(i,j)+1)-

gammln(rw(j))+rw(j)*log(rw(j)/(esc(i)/wesc(j)+rw(j)))+esc_w(i,j)*log((esc(

i)/wesc(j))/((esc(i)/wesc(j))+rw(j)))); 

       } 

    } 

 

    // Aerial likelihoods 

    for(k=1;k<=nair;k++) 

    { 

     if(esc_a(i,k)>0) 

     { 

      tfa+= -1*(gammln(esc_a(i,k)+ra(k))-gammln(esc_a(i,k)+1)-

gammln(ra(k))+ra(k)*log(ra(k)/(esc(i)/aesc(k)+ra(k)))+esc_a(i,k)*log((esc(

i)/aesc(k))/((esc(i)/aesc(k))+ra(k)))); 

       

     } 

    } 

 

    // Harvest and effort likelihoods 

    for(l=1;l<=nweek;l++) 

    { 

 

       wk_est(i,l) = t_run(i)*testf(i,l); 

       if(ccat(i,l)>0) 

       { 

        

        if((1-ccat(i,l)/wk_est(i,l))>0) 

        { 

         

        if(creg(i,l)==1){ 

         tfcpart1+= square(log(ceff(i,l))-log((-log(1-

ccat(i,l)/wk_est(i,l)))/q(1))); 

         ctr1++; 

 

         } 

          

        if(creg(i,l)==2){ 

         tfcpart2+= square(log(ceff(i,l))-log((-log(1-

ccat(i,l)/wk_est(i,l)))/q(2))); 

         ctr2++; 

         

         } 
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        if(creg(i,l)==3){ 

         tfcpart3+= square(log(ceff(i,l))-log((-log(1-

ccat(i,l)/wk_est(i,l)))/q(3))); 

         ctr3++; 

 

         } 

          

        } 

 

     } 

   } 

 

   } 

 

   tfc1= 0.5*ctr1*log(tfcpart1); 

   tfc2= 0.5*ctr2*log(tfcpart2); 

   tfc3= 0.5*ctr3*log(tfcpart3); 

 

   objf+= tft+tfw+tfa+tfc1+tfc2+tfc3; // Objective Function 

 

//========================================================================

======== 

// Report Section 

//========================================================================

======== 

REPORT_SECTION 

 

   report<<"#Total Run"<<endl; 

   report<< t_run << endl; 

   report<<"#ObjFunc"<<endl; 

   report<< objf << endl; 

   report<<"#rw"<<endl; 

   report<< rw << endl; 

   report<<"#ra"<<endl; 

   report<< ra << endl; 

   report<< "#q" << endl; 

   report<< q << endl; 

   report<< "#wesc" << endl; 

   report<< wesc << endl; 

   report<< "#aesc" << endl; 

   report<< aesc << endl; 

   report<<"#tcatch"<<endl; 

   report<< tcatch<<endl; 

   report<<"#Total Escapement"<<endl; 

   report<< esc << endl; 

 

 

 

//========================================================================

========= 

// Globals Section 

//========================================================================

========= 
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GLOBALS_SECTION 

  #include <df1b2fun.h> 

  #include <math.h> 

  #include <time.h> 

  #include <statsLib.h> 

  #include <adrndeff.h> 

  #include <admodel.h> 

  time_t start,finish; 

  long hour,minute,second; 

  double elapsed_time; 

 

TOP_OF_MAIN_SECTION 

  arrmblsize = 100000000; 

  gradient_structure::set_MAX_NVAR_OFFSET(30000000); 

  gradient_structure::set_GRADSTACK_BUFFER_SIZE(3000000);  

  gradient_structure::set_CMPDIF_BUFFER_SIZE(100000000); 

  time(&start); 

 

FINAL_SECTION 

 // Output summary stuff 

  time(&finish); 

  elapsed_time = difftime(finish,start); 

  hour = long(elapsed_time)/3600; 

  minute = long(elapsed_time)%3600/60; 

  second = (long(elapsed_time)%3600)%60; 

  cout << endl << endl << "Starting time: " << ctime(&start); 

  cout << "Finishing time: " << ctime(&finish); 

  cout << "This run took: " << hour << " hours, " << minute << " minutes, 

" << second << " seconds." << endl << endl; 
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Appendix 6. AYK SSI EXPERT PANEL MEMBER BIOGRAPHIES 

 

Daniel E. Schindler (Chair) 

deschind@uw.edu 
 
Dr. Daniel Schindler is a Professor in the School of Aquatic and Fishery Sciences at the University of 
Washington where he has been on the faculty since 1997. He is a principal investigator of the UW Alaska 
Salmon Program which has studied the ecology of salmon and their watersheds in western Alaska since 
1946. His research is focused on freshwater ecosystems and their watersheds, addressing questions 
ranging from understanding basic ecological and evolutionary processes, to the effects of climate change, 
watershed development and fisheries on natural resources. In Bristol Bay his research has quantified why 
the vast and intact watersheds have produced reliable and sustainable runs of salmon, despite high 
harvest rates, warming climate, and few management interventions. He received a B. Sc. with Honours 
from the University of British Columbia, and a M.S. and Ph.D. from the University of Wisconsin-Madison. 
He has published over 180 peer-reviewed scientific papers and serves as an editor of the journals Ecology, 
Ecosystems, and FACETS. He spends over 3 months of the year in the field in western Alaska, and has 
provided professional service to a wide variety of governmental and non-governmental organizations. 

 

Milo Adkison 

mdadkison@alaska.edu 

Dr. Milo Adkison is a Professor of Fisheries and Chair of the Fisheries Department at the College of 

Fisheries and Ocean Sciences, University of Alaska Fairbanks, where he’s worked since 1997. He’s also 

worked for the Biological Resources Division of USGS and as crew on a Bristol Bay gillnetter. The research 

of Dr. Adkison and his students typically involves applying quantitative methods to aspects of Pacific 

salmon biology and fisheries management. Recent studies have focused on nutrients imported from the 

ocean by salmon, survival of Chinook salmon, bycatch of salmon in groundfish fisheries, and improving 

stock assessment models. 

 

Randall M. Peterman 

peterman@sfu.ca 

Dr. Randall M. Peterman retired in 2012 from the School of Resource and Environmental Management at 

Simon Fraser University (Burnaby, British Columbia, Canada), where he held the position of Professor and 

Canada Research Chair in Fisheries Risk Assessment and Management.  For over 40 years, his award-

winning research has focused on quantitative methods to improve understanding of population dynamics 

of Pacific salmon and their management, particularly in the presence of uncertainties and risks.  He has 

served on more than 25 professional committees, including (1) the Pacific Salmon Commission's 2016 

Independent Expert Panel review of Chinook salmon forecasting methods, (2) the 2013 Independent 

Advisory Panel on the decline of southern British Columbia Chinook salmon, (3) the Pacific Salmon 

Commission's 2010 Expert Panel on investigating the causes of the decline in productivity of Fraser River 
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Sockeye, (4) the 2008 Skeena Independent Science Review Panel, and (5) the Royal Society of Canada's 

2012 Expert Panel on "Sustaining Canada's Marine Biodiversity: Responding to the Challenges Posed by 

Climate Change, Fisheries, and Aquaculture". 

 

André E. Punt  

aepunt@uw.edu 

Dr. André E. Punt is a Professor in the School of Aquatic and Fishery Sciences at the University Washington, 

Seattle, USA and the currently the Director of the School. He received his B.Sc., M.Sc. and Ph.D. in Applied 

Mathematics at the University of Cape Town, South Africa. The research undertaken by Dr. Punt and his 

research group relates broadly to the development and application of fisheries stock assessment 

techniques, bioeconomic modelling, and the evaluation of the performance of stock assessment methods 

and harvest control rules using the Management Strategy Evaluation approach. Dr. Punt has conducted 

stock assessments for a wide range of species, ranging from anchovies and sardines, to groundfish, tunas, 

and cetaceans. He has published over 300 papers in the peer-reviewed literature, along with over 400 

technical reports. Dr. Punt is currently a member of the Scientific and Statistical Committee of the Pacific 

Fishery Management Council, the advisory committee for Center for the Advancement of Population 

Assessment Methodology, the Crab Plan Team of the North Pacific Fishery Management Council, and the 

Scientific Committee of the International Whaling Commission. 

 

Timothy Walsworth (analyst) 

timothy.walsworth@usu.edu 

Dr. Timothy Walsworth is a post-doctoral researcher at Utah State University. He received his B.S. in 

Zoology from the University of Wisconsin-Madison, his M.S. in Ecology from Utah State University, and his 

Ph.D. in Aquatic and Fishery Sciences from the University of Washington. His research focuses on using 

quantitative modeling approaches to examine the potential response of biological communities to 

environmental and management changes, thus allowing stakeholders and managers to consider potential 

trade-offs among alternative approaches to management of aquatic resources. He has conducted 

research in diverse ecological systems and issues, from highly altered desert streams to pristine Alaskan 

watersheds, and from endangered species population dynamics to commercial fishery bioeconomic 

models. 
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