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Empirically based simulation models can help fisheries managers make difficult 

decisions involving trade-offs between harvests and maintaining spawner abundance, especially 

when data contain uncertainties. We developed such a general risk-assessment framework and 

applied it to chum salmon (Oncorhynchus keta) stocks in the Arctic-Yukon-Kuskokwim region 

of Alaska. These stocks experienced low abundance in the 1990s, which led to declarations of 

economic disaster and calls for changes in harvest strategies. Our stochastic model provides 

decision makers with quantitative information about trade-offs among commercial harvest, 

subsistence harvest, and spawner abundance. The model included outcome uncertainty (the 

difference between target and realized spawner abundances) in the subsistence and commercial 

catch modules. We also used closed-loop simulations to investigate the utility of time-varying 

management policies in which target spawner abundance changed in response to changes in the 

Ricker productivity parameter (a), as estimated with a Kalman filter.  Time-varying policies 

resulted in higher escapements and catches and reduced risk across a range of harvest rates.  The 

resulting generic risk-assessment framework can be used to evaluate harvest guidelines for most 

salmon stocks. 

 

Keywords: salmon management, trade-offs, Kalman filter, implementation error, management 

strategy evaluation 
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 Managers of most North Pacific salmon (Oncorhynchus spp.) populations have two 

management objectives, one related to achieving desired harvests and one related to desired 

spawner abundances (escapements). The two objectives are directly linked by the salmon life 

history. Theoretically, long-term maximum sustainable yield (MSY) is achieved by annually 

obtaining the escapement target or goal, Sm, that produces that yield and harvesting all fish above 

that target (Hilborn and Walters 1992).  However, three factors make salmon management 

difficult in practice. First, salmon data are imperfect due to observation or measurement errors in 

both spawner abundance and stock identification of mixed-stock catches. Such errors make it 

difficult to reliably estimate Sm for a given population (Walters and Ludwig 1981). A second 

management challenge is created by harvesting. Even if the true Sm were known for a population, 

it usually cannot be obtained exactly because of (1) incomplete management control over the 

harvesting process (i.e., implementation error [Eggers and Rogers 1987] or outcome uncertainty 

[Holt and Peterman 2006]), and (2) trade-off decisions in mixed-stock fisheries regarding 

allocation of returning salmon to catch among different interest groups and spawning escapement 

(Wood et al. 1998). A third challenge to achieving target escapements consistently is that 

temporal changes occur in environmental conditions, particularly in the ocean, which greatly 

affect salmon survival rates and adult abundance each year (Francis et al. 1998; Mueter et al. 

2002).   

 Given these pervasive uncertainties in salmon stock assessment and management created 

by imperfect data, outcome uncertainty, and environmental variation, methods that explicitly 

take these uncertainties into account are clearly needed to meet both management objectives 

listed above. Considerable work has been done on developing such methods, not only for 
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salmon, but also for pelagic and groundfish species (Walters and Martell 2004). These methods 

include, among others, active adaptive management and formal quantitative decision analysis 

(Walters 1986), as well as stochastic closed-loop simulations or management strategy 

evaluations (MSEs) that simulate the parameter-estimation step that feeds into updating 

management actions (Walters 1986; Butterworth and Punt 1999). These methods differ in their 

approach but all essentially provide a framework for conducting risk assessments of management 

options, i.e., estimating the uncertain values of indicators of management objectives by explicitly 

modelling several sources of variation in fisheries systems. 

 The main objective of our research project was to develop a risk-assessment framework in 

a decision-analysis context for evaluating alternative management policies for salmon 

populations. We used the method of closed-loop simulations, or MSE. We developed this 

framework and applied it to four chum salmon populations (O. keta) in the remote Arctic-

Yukon-Kuskokwim (AYK) region of Alaska (Fig. 1) where trade-offs among harvesting and 

escapement objectives are prominent. Large and rapid decreases in abundance of chum and other 

salmon species in that region in the late 1990s-early 2000s not only greatly reduced economic 

value of commercial catches, but also caused severe shortages in subsistence catches for people 

living in this remote area, which forced difficult management trade-off decisions between 

allowing more spawners and achieving desired catches (AYK SSI 2006).  

Fig. 1 

 The low returns of chum salmon in the AYK region in the late 1990s occurred despite 

relatively low harvest rates, which suggests a decrease in productivity in that period (National 

Research Council 2004). Although the exact cause of this decrease in productivity remains 

unclear, it is hypothesized that chum salmon productivity is determined by environmental 

conditions during the early period of ocean residence (Kruse 1998, AYK SSI 2006).  Regardless 
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of the cause, this history prompted us to conduct our risk assessments across a wide range of 

scenarios of future temporal changes in productivity; escapement goals and harvests may need to 

respond in a timely manner to reflect such changes in the future.  
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 Another key objective of our research was to quantitatively estimate trade-offs that would 

be incurred by any given choice of management policy. We define the latter term to mean an 

escapement goal (i.e., target) combined with a harvest rate that is applied to the number of 

returning salmon in excess of that goal. Due to logistical constraints, the realized harvest rate is 

rarely 100% in practice, as it should ideally be to achieve MSY (Hilborn and Walters 1992), so 

in our analyses, we allowed it to be set as a policy option. Fisheries managers everywhere are 

well aware of the unavoidable qualitative trade-off between increasing catch and maintaining 

numbers of spawners, as well as trade-offs implied by allocating catch among user groups. 

However, quantitative values of these trade-offs are difficult to estimate reliably due to the three 

sources of uncertainty described above: observation error in data, uncertainties about outcomes 

of implementing management regulations, and environmental variation. Our analysis includes 

these three sources of uncertainty so as to better estimate escapement and indicators of catches. 

Our method will help managers to consider more thoroughly the trade-offs inherent in their 

policy choices (e.g., how much increase would occur in one indicator for a given decrease in 

another).  

 To address our research objectives, we developed an empirically based stochastic 

simulation model (see Methods) for each of the four chum salmon populations. We used this 

model to evaluate the potential effectiveness of various harvesting/escapement goal policies at 

meeting management objectives. The model included not only salmon population dynamics and 

environmental influences on them, but also uncertainty in implementation of harvesting 
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decisions, which caused realized escapements to differ stochastically from targets. We refer to 

those stochastic differences as "outcome uncertainty" (Holt and Peterman 2006), which is a 

general term that encompasses not only "implementation error/implementation uncertainty" (i.e., 

non-compliance with regulations by harvesters and/or imperfect knowledge of stock abundance), 

but also includes physical and biological dynamics that change vulnerability of fish to fishing 

gear. We also compared two types of management policies. In one version of the model (the 

closed-loop simulation or management strategy evaluation with a time-varying 

harvest/escapement goal policy), stock assessments were based on simulated catch and 

escapement data that assumed observation error existed, and the simulated management 

decision-making was based on the most recent simulated year's parameter estimates derived from 

the simulated stock assessment. In contrast, in the time-invariant version of the model, the 

escapement goal was constant over time (the most common situation in Pacific salmon fisheries). 

We modelled the dynamics of both commercial and subsistence fisheries and assessed risks 

(such as too few spawners, low upriver subsistence catches, and closure of commercial fisheries) 

associated with different management policies. In addition to informing salmon managers, this 

modelling framework is applicable to the management of other fish stocks that are subject to 

decadal-scale variations in productivity.  
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Methods 

 The AYK region is very large (Fig. 1) and the intensity of data collection is much lower 

than for other regions of Alaska and British Columbia. Four chum salmon stocks in the AYK 

region were selected for this analysis based on the duration of existing time series and 

availability of age-composition data to construct brood tables (spawner abundance by year and 
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abundance of their offspring that survive to become adult recruits).  The four stocks are the 

Yukon River fall chum, Anvik River, Andreafsky River, and the combined Kwiniuk and 

Tubutulik Rivers in the Norton Sound District. The Anvik and Andreafsky are tributaries of the 

Yukon River with summer runs of chum salmon (Fig. 1).  Data on the number of spawners come 

from weirs and aerial surveys expanded to total escapement.  Subsistence and commercial 

catches are attributed to stream of origin.  Age-composition samples from weirs and test fisheries 

are applied to the escapement and catch data to determine the year of spawning (brood year). 

Brood tables for these stocks were compiled from catch, escapement, and age-composition data 

collected by the Alaska Department of Fish and Game (ADF&G).  Brood tables for the four 

stocks contained the same data as used by Hilborn et al. (2007), except they were updated by 

ADF&G biologists (see Acknowledgments) to include more recent brood years, resulting in data 

series on spawners and resulting recruits ranging from 29 to 36 years in duration over brood 

years 1965-2002.  
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Spawner-recruit dynamics 

 There is considerable empirical evidence that productivity of salmon populations is 

influenced by variation in environmental (especially oceanographic) conditions at both high-

frequency, interannual scales (Mueter et al. 2002) and at low-frequency, decadal scales (Beamish 

1995; Mantua et al. 1997; Francis et al. 1998).  Therefore, to generate spawner-to-recruit 

dynamics in our simulations, we used a standard Ricker model that was modified to have a time-

varying a parameter to reflect that decadal-scale environmental variability in addition to the 

usual high-frequency variability: 
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where Rt is the total number of recruits resulting from St, spawners in year t, the time-varying 

parameter, at, represents density-independent productivity, and the b parameter reflects density-

dependent effects (assumed constant for each stock). We refer to vt ~ N(0, ) as "observation 

error", although technically speaking vt is composed of two high-frequency sources of variation, 

observation error and high-frequency natural variability that is not autocorrelated over time.  

Given the way the data are collected, the observation error on recruits is expected to be higher 

than for spawners, because the latter are measured more directly.  Variation in the at parameter 

was modeled as a random walk: 

2
vσ

 

(2) at = at-1 + wt  

 

with wt ~ N(0, ).   2
wσ

 To estimate the parameters of this time-varying component of the model, we applied a 

linear Kalman filter estimation procedure, with (1) as the observation equation and (2) as the 

system equation, to the historical stock-recruitment data for the four AYK chum salmon stocks. 

This procedure estimated past changes in the at parameter. Details of the Kalman filter method 

are provided in the Appendix of Peterman et al. (2000) and the computer code is available from 

the supplementary on-line material for Dorner et al. (2008). We used a Kalman filter estimation 

procedure because of its top-ranked performance in Monte Carlo simulation trials (Peterman et 

al. 2000) under a wide variety of scenarios for changes in underlying salmon productivity.  In 
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those simulations, this method performed better than the standard linear regression fitting to the 

Ricker model, which is the same as Eq. 1 except that a is not time-dependent.  Peterman et al. 

(2003) also found that a random-walk system equation for Eq. 2 in the Kalman filter procedure 

produced estimates that tracked decadal changes in productivity better than a first-order 

autocorrelation function for Eq. 2.  To estimate the other model parameters {b, , and }, our 

Kalman filter estimation procedure used the historical stock-recruitment data and maximized the 

concentrated likelihood by calling the S-plus function "ms" (Insightful Corp., 2001).  The 

resulting series of at estimates was then recursively smoothed with a Kalman-filter fixed-interval 

smoother, as described in Peterman et al. (2003). Definitions of parameters of the simulation 

model are summarized in Table 1. 
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Table 1 

 To drive the variation in at in the forward simulations, we used a bounded random walk to 

simulate random series of at values that had the same statistical properties as the smoothed at 

values that were estimated from the historical data by the Kalman filter.  To do so, we added a 

logistic penalty function to Eq. 2 in the forward simulations to constrain the random walk within 

the range of empirically estimated at values (Nicolau  2002).  The penalty term pt is: 

 

(3) ))((1 δ−−−α−−
= aaIt te

mIp   195 

196  

where I is an indicator variable such that { }aaiforaaifI tt <>−= 11 . The parameters m = 

0.5, α = 10, and δ = 0.75, which define the shape of the logistic function, were optimized to 

match the variance, amplitude, and first-order autocorrelation of the observed at values. 
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Harvesting 201 
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 To complete the model of the entire chum-salmon life cycle, we added a harvest dynamics 

function.  We did not attempt to model the in-season dynamics of the chum salmon fishery 

because we are interested in the longer-term population dynamics and as well, there is little 

information available from the region to parameterize such a model.   Instead, we used 

empirically based harvest rules that give preference to meeting escapement targets, subsistence 

fisheries, and commercial fisheries, in that order, which is what ADF&G uses. The harvest rule 

is specified by an escapement target (E, not to be confused with the actual realized spawners, St) 

and a harvest rate on the remaining run once the escapement target is met.  In principle, these 

two quantities can be set independently; the escapement target is set to meet conservation 

objectives, whereas the harvest rate depends on harvesting capacity, duration of openings, etc. 

 Realized escapements and harvest rates will differ from their targets because of outcome 

uncertainty, as defined above.  However, year-by-year historical target harvest rates and 

escapement goals are not known for our four chum salmon stocks.  Therefore, we could not 

estimate outcome uncertainty directly from the historically realized and target harvest rates, as 

has been done for some sockeye salmon stocks (Holt and Peterman 2006).  Instead, following 

Eggers (1993), we used the observed data on run size (abundance of returning adult recruits), 

subsistence catch, and commercial catch to fit empirical harvest dynamics models that 

represented the harvesting process as realistically as possible.  For each stock, a linear regression 

was fit between total catch and run size and between subsistence catch and run size.  The 

regression error was modeled as a constant coefficient of variation (CV, i.e., standard deviation 

divided by the mean) of catch in relation to run size.  This regression model was implemented 

with the generalized linear model function, glm, in the R language and the parameters were 
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estimated by the method of quasi-likelihood (R Development Core Team 2008).  The constant-

CV model is specified with function arguments family = quasi, link = identity, and variance = 

mean squared.   
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 Existing salmon harvest policies in Alaska are time invariant in that they are not routinely 

adjusted in response to perceived changes in salmon productivity.  During the early years of 

salmon management, fisheries were opened and closed to regulate percentage harvest rates 

(Hilsinger et al. 2009).    Starting in 1992, the Alaska Department of Fish and Game switched 

from largely passive harvest-rate management to more actively managing the salmon fisheries to 

meet fixed escapement goals (Hilsinger et al. 2009).  To reflect this change that occurred in 

managing the AYK salmon fisheries, the total catch data were divided into two periods: before 

1992 and 1992 and later.  We then tested for different slopes and intercepts in the total-catch 

regressions in the two periods.  

 The fitted regression line can be interpreted as an empirical harvest policy in which the 

intercept on the x axis represents an escapement target (though not necessarily the target 

specified historically by managers) and the slope is the realized harvest rate on the remaining run 

once the escapement target is met.  The residual variation around the regression lines is an 

empirical estimate of outcome uncertainty at the harvesting stage.  The slopes and intercepts 

from the linear regressions were used to simulate the subsistence fisheries, but not the 

commercial fisheries. Instead, the total catch (commercial plus subsistence) was based on user-

input escapement targets and harvest rates, as described below.  The regressions were performed 

to characterize the general form of the harvest function and to estimate the likely levels of 

outcome uncertainty. 
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 In the simulation model, the harvest rule is specified by a user-defined escapement target, 

E, a harvest rate for the subsistence fishery (hs), a harvest rate (recall that this is for the number 

of fish surplus to the escapement target) for the combined subsistence plus commercial fisheries 

(hc) and the corresponding coefficient of variation of the outcome uncertainty ( ).  If Tt, the 

total chum salmon return in year t, is below the escapement target (Tt < E), there is only 

subsistence catch, with a harvest rate drawn from a uniform distribution, ranging from 0 to the 

maximum observed subsistence harvest rate for that stock.  Following Eggers (1993), we used 

the uniform distribution such that subsistence catch is reduced, but not eliminated, when Tt < E 

(Fig. S1).  Above the escapement target, the subsistence catch is calculated from the regression 

line (parameters in Table 2) with normally distributed outcome uncertainty.  Total catch 

(commercial plus subsistence) is calculated from the harvest rate, as specified by the user (hc), 

applied to the fish that are surplus to the target, E:  

246 
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Table 2 
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where Ct is catch and ut ~N(0, ).  The variance of the outcome uncertainty, , is related to 

the coefficients of variation estimated in the regression models, by  σu = CVu.  The units of E, Ct, 

and Tt are thousands of fish.  Finally, the commercial catch is the total catch minus subsistence 

catch, except there is no commercial fishery if this difference is negative.  This sequence 

recognizes the priority of subsistence over commercial catch.  The realized escapement is simply 

St = Tt - Ct.  Because of outcome uncertainty, and in years of low adult returns, the escapement 

target is not met exactly each year.  In model simulations, we mainly investigated the effects of 

using different escapement targets and total harvest rate occurring on the number of fish above 

2
uσ

2
uσ



 13

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

those targets.  The subsistence harvest rate and variance in outcome uncertainty were held 

constant, except for sensitivity analysis of harvest rules (see below). The complete harvest 

function and distributions of simulated catches are shown in the Supplementary Materials.   

 The stochastic life-cycle model is fully specified by combining the spawner-recruit 

function (Eq. 1 and 2) and harvest-dynamics function (Eq. 4) with random variability included in 

all equations (Fig. 2).  The five most recent observed escapement values were used to initialize 

the model in order to estimate recruitment starting in year 1.  To account for the long-term 

(decadal) variation in the at values, each simulation was run for 100 years.  Preliminary 

simulations, conducted with between 100 and 1000 Monte Carlo replicates, indicated that the 

values of the performance measures described below stabilized at 500 replicates.  Therefore, 

analysis of each combination of harvest parameters was repeated with 500 replicates.  The 

population parameters used in the simulation model are listed in Tables 1 and 2. 

Fig. 2 

 

Management policies  

 We simulated two types of management policies, time-invariant and time-varying, each 

using the same core population dynamics and harvesting model (Fig. 2).  For time-invariant 

policies, the user-specified harvest parameters (escapement target, harvest rate on the population 

exceeding that target) remained unchanged for the duration of the 100-year simulation.  In 

contrast, for time-varying policies, the harvest rate on the population exceeding the escapement 

target remained fixed across years, but the target was updated each year in relation to the most 

recent estimate of the at value.  Owing to the chum salmon life cycle, there is a five-year lag 

before at can be estimated from the returns at ages four and five.  For these time-varying policies, 

each simulated year produced a new spawner-recruit data pair and the Kalman filter updated the 
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estimate of the true at parameter. The following transcendental equation from Quinn and Deriso 

(1999) was then used to solve for the escapement that would generate the maximum sustainable 

catch (Sm), 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

 

(5) .  1)1( ˆ =− − mt bSa
m eSb

 

Where  is the Kalman filter estimate of the true at. This new escapement target, Sm, was used 

in the time-varying management policy the following year. In this case, Sm replaced the fixed 

escapement target, E, in Eq. 4.  This time-varying policy was compared against a time-invariant 

policy that used the value of  Sm calculated from the mean at values (Table 2). 

tâ

 Performance measures were defined for escapement, subsistence, and commercial catch.  

For each of these categories, we calculated the average across 500 Monte Carlo trials of the 

mean and coefficient of variation over the 100 simulated years, as well as a measure of risk.  For 

the spawning stock, the index of risk was the percentage of years that the run size was below the 

escapement target set by the user.  Because we lacked a predefined measure of risk for the 

subsistence fishery, we used the percentage of simulated years in which the subsistence catch 

was in the lower quartile of historically observed subsistence catches for that stock.  In years 

with low returns, the subsistence fishery is not closed, but it is assumed that low catches are 

undesirable.  Finally, because commercial fishery closures can occur when run size is too low, 

the risk measure for the commercial fishery was the percentage of years with no commercial 

fishery. 
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Estimated historical productivity  

 The Ricker at values estimated from the historical data by the Kalman filter indicate large-

amplitude and substantial decadal-scale shifts in productivity (Fig. 3).  There is a general pattern 

of high productivity in the 1970s, after which at dropped to its lowest in the mid-1990s.  For 

brood years 1995-1997, the Andreafsky River at values approach zero, which is the replacement 

value for the spawning stock with no fishing (i.e., for R/S = 1, loge(R/S) = 0).  Different 

productivity patterns were observed among stocks (Fig. 3).  The at values for the Yukon River 

and its tributaries increased in the late 1990s with the highest value in that series estimated in 

brood year 2000 for Yukon fall chum.  In contrast, there was no indication of increasing 

productivity for the Kwiniuk and Tubutulik Rivers as of brood year 2000. 

Fig. 3 

 The Kalman filter decomposes each observed loge(R/S) into three components: 

productivity (at), a density-dependent term (-bSt), and an uncorrelated residual component (vt), 

that reflects both observation error and short-term variability in productivity (Fig. 4).  These bar 

plots illustrate that the reduction in productivity (low at) occurred during a period of relatively 

high stock abundance (large -bSt,), and that low productivity was compounded by negative 

residuals (vt), especially for the Yukon River and its tributaries.  In contrast, the decline in 

productivities for the Kwiniuk and Tubutulik Rivers was more gradual with alternating positive 

and negative residuals (Fig. 4).  The Yukon and Andreafsky Rivers had the largest signal-to-

noise ratios (σ2
w / σ2

v) and the Kwiniuk and Tubutulik Rivers the lowest (Table 2). 

Fig. 4 

 In a separate analyses, significant relationships were identified between estimated salmon 

productivity and a number of environmental variables (Supplementary Materials).  Productivity 

was positively related to the Pacific Decadal Oscillation at a lag of three years and May sea 
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surface temperature in the Bering Sea at lag 2.  These lags correspond with the years of ocean 

residence of chum salmon.  The at values were negatively related to Nome precipitation at lag of 

1, which corresponds to the age of freshwater residence and migration to salt water.  These 

relationships were not used in the life-cycle model but are reported here to indicate the 

environmental basis of decadal variability in these chum salmon stocks. 

 

Harvest functions and outcome uncertainty 

   The empirical relationships between catch and run size were well approximated with 

linear regressions (Fig. 5).  According to F tests on all four stocks, the best regression model for 

total catch (commercial plus subsistence) had a common intercept and different slopes for the 

two periods, before 1992 and 1992 and later.  The significantly lower slopes for the latter period 

reflect the introduction of escapement targets and harvesting that was constrained by market 

forces.  These empirically estimated relationships between total catch and run size can be 

interpreted as hybrid harvest policies: the x intercept can be considered an escapement target and 

the regression slope as the harvest rate on the run exceeding that target.  The regression lines 

cross the x axis near zero (Fig. 5), well below the ADF&G escapement-goal range (Table 2) and 

the slopes are substantially less than one, which indicates that the empirical escapement policies 

differ from the theoretically optimal policy of harvesting all fish above the escapement target 

(Hilborn and Walters 1992). This result is not surprising given the logistical difficulty in any 

fishery of achieving a harvest rate that high and given that harvesting capacity is driven in part 

by market demand.  The variance in residuals around these total catch-versus-run size functions 

showed substantial outcome uncertainty, or deviation between target and realized outcomes (Fig. 

5).  The Yukon River had the smallest scatter around the regression line for total catch (CVu,T in 

Fig. 5 
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Table 2),  whereas the Kwiniuk and Tubutulik Rivers had the highest.  Subsistence catch alone 

also increased with increasing run size and was highest, as a fraction of the total catch, for the 

fall Yukon chum stock (Fig. 5).  For subsistence fisheries, the y-intercepts of the regression lines 

were positive, which is consistent with policies to allow some level of subsistence fishing 

regardless of run size.  

 

Constant management policies: trade-offs among multiple indicators 

 The nine performance measures from simulated time-invariant management policies 

illustrate trade-offs among measures of escapement, subsistence, and commercial catch (Fig. 6).  

Here we illustrate performance measures for Yukon fall chum salmon; we produced similar 

figures for the other three stocks (see Supplementary Materials). Each of the nine isopleth 

diagrams or contour plots in Figure 6 was generated by drawing isolines through the set of 121 

values of a given indicator that resulted from running the model sequentially across 121 

combinations of 11 different escapement targets and 11 different harvest rates (the latter applied 

to the number of salmon above those respective escapement targets). The latter harvest rates are 

those that managers aim to achieve through their choices of regulations, but due to outcome 

uncertainty, results will usually differ from the intended harvest rates. For each of those 121 

management policies, 500 Monte Carlo trials were run and average values of indicators were 

used for plotting.  A given (x,y) point on a graph corresponds to a particular management policy 

option, and that point is the same on all contour plots for the nine indicators. Thus, the 

quantitative trade-offs among indicators can be explored for any set of actions.  For reference 

across the different performance measures, vertical gray lines indicate ADF&G's escapement 

Fig. 6 
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goal range, and the horizontal gray lines are the slopes of the regression of total catch on run size 

(slope.beforeT and slope.afterT in Table 2). 
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 The top row of three isopleth diagrams (Fig. 6) shows indicators related to escapement. 

Realized mean escapement increases with increasing escapement target; the isopleths are 

diagonal because it is more difficult to meet escapement targets at high harvest rates, especially 

with outcome uncertainty. The coefficient of variation over time of escapement is fairly uniform 

across most combinations of escapement target and harvest rate, except that the CV increases 

rapidly when high harvest rates are combined with low escapement targets.  The chance of not 

meeting the escapement target increases with the target—the higher the target, the more difficult 

it is to obtain.  At higher harvest rates, the isopleths are again sloped because the higher harvest 

rates make it more difficult to attain the escapement target.   

 Subsistence catches are fairly similar over many combinations of escapement targets and 

harvest (second row of Fig. 6) rates because of the preference given to subsistence catches in the 

model's harvest rules; i.e., subsistence catch is reduced but not eliminated in years when the 

escapement target is not met (Fig. 5). Thus, the chance of the subsistence fishery falling below 

its threshold is high only at very low abundance—namely for low escapement targets and high 

harvest rates. 

 Indicators related to commercial catch (third row of Fig. 6) show that, as expected, mean 

commercial catch is maximized between ADF&G's escapement-goal range (vertical gray lines) 

with a harvest rate = 1 on fish exceeding the escapement goal.  However, this maximum yield is 

associated with 33-49% of years with no commercial fishery ("bang-bang" control policy of 

Clark 1985).  The chance of having no commercial fishery is minimized at low escapement 

targets and intermediate harvest rates.  In contrast, the chance of no commercial fishery is 
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maximized at low harvest rates and increases with the escapement target because of the 

preference for subsistence fisheries; in these cases, surplus salmon are not available for a 

commercial fishery.  
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 Trade-offs are apparent when comparing across classes of performance measures (Fig. 6).  

The escapement and subsistence performance measures are largely compatible because the 

subsistence fishery has a low harvest rate.  However, there are other obvious trade-offs. For 

instance, mean commercial catch is maximized at high harvest rates that produce an undesirable 

65-71% of years in which escapement is below the escapement target and subsistence catch is 

reduced.  

 The range of harvest rates indicated by the two horizontal lines in Fig. 6 (0.23-0.53) appear 

fairly robust to the range of simulated variability in chum salmon productivity.  Within those 

harvest rates and ADF&G's escapement-goal range of 300 to 600 thousand spawners, 

escapement goals are met in 60-90% of years, the subsistence fishery is unconstrained, and 

commercial fisheries would be allowed in 14-71% of years.  Moving from the upper to lower 

bound of the escapement target range would sacrifice some escapement and very little 

subsistence catch, but would also increase the commercial catch, while reducing the year-to-year 

variability in that catch and drastically reducing the percentage of years with no commercial 

fishery (Fig. 6).  These are just examples to illustrate interpretations of the contour plots (Fig. 6), 

which are intended to allow decision makers to visualize and quantify trade-offs in performance 

measures while exploring policy options (combinations of escapement target and harvest rate on 

the run exceeding that target).  

 The outcome uncertainty used in the simulations (CVu,T and CVu,s) is the same order of 

magnitude as the correlated (σw) and uncorrelated (σv) recruitment variability (Table 2).  To 
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investigate the influence of outcome uncertainty on our results, we repeated the simulations with 

outcome uncertainty removed (CVu,T and CVu,s =0).  For a given management policy, removing 

outcome uncertainty increased the mean levels of escapement, subsistence, and commercial 

catch (compare Fig. 7 with Fig. 6).  In this case, the contour lines for the percent of years below 

the escapement target are almost vertical because, even at high harvest rates, there is reduced risk 

of not meeting the escapement target.  In contrast, at low harvest rates the commercial fishery 

would be closed in most years to allow a subsistence fishery to occur.  Fig. 7 

 

Time-varying management policies 

 In general, the time-varying management policy was able to improve on the best time-

invariant management policy over a range of harvest rates (Fig. 8). The primary comparison is 

between the time-varying baseline policy (bold solid lines) and the time-invariant policy that had 

an escapement goal, Sm, that corresponded with the mean Ricker at parameter (thin solid lines). 

Both of these lines include outcome uncertainty and therefore represent the most realistic 

situation.  The time-varying harvest policy resulted in higher mean escapement and subsistence 

catch across all levels of harvest rate, as well as higher commercial catch at high harvest rates.  

The CV of escapement was higher at high harvest rates, reflecting the fact that the escapement 

target was adjusted each year.  With the time-varying harvest policy, the chance of not meeting 

the escapement target was reduced at low harvest rates and increased slightly at high harvest 

rates.  The chance of low subsistence catches was reduced at all harvest rates and the chance of 

closing the commercial fishery was reduced at moderate and high harvest rates.  In summary, 

with the levels of variability in the a values simulated with Equations 2 and 3 and with the 

Fig. 8 



 21

parameter values in Table 2, the time-varying management policies were able to improve on the 

time-invariant policies.   
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 To investigate the reasons for the relative performance of the time-varying and time-

invariant policies, we did sensitivity analyses by selectively removing the main sources of error.  

Removing the combination of both observation error and high-frequency recruitment variability 

alone (i.e., by setting vt = 0) had relatively little effect on most performance measures (not 

shown).  In contrast, removing outcome uncertainty (i.e., by setting CVu,T and CVu,s = 0) had the 

largest effect on changing the performance measures (dashed lines Fig. 8).  In these cases, 

increases were observed in means for all three measures, but only at high harvest rates for catch.  

With no outcome uncertainty, the management policy would operate as designed by more 

frequently meeting escapement targets and keeping subsistence catches relatively high, while 

transferring recruitment variability into commercial catch.  Therefore, at low harvest rates, the 

commercial fishery would be closed more often, and at high harvest rates, it would be closed less 

often.  

 With outcome uncertainty removed, the relative differences between the time-varying 

(bold dashed lines) and time-invariant (thin dashed lines) policies were similar to the differences 

with outcome uncertainty (Fig. 8).  With the time varying harvest policy, mean escapement and 

catches were higher and percent risk lower.  These differences were largest for escapement at 

low harvest rates, for subsistence catches at all harvest rates and for commercial catch at high 

harvest rates.  Outcome uncertainty had a large effect on the performance measures, but for a 

given level of outcome uncertainty, the time-varying harvest policy could improve on the time-

invariant policy.  
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Discussion  474 
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Arctic-Yukon-Kuskokwim chum salmon  

 We conducted simulations across stochastically generated decadal-scale trends in 

productivity because our empirical analysis confirmed that the four major chum salmon stocks in 

the Arctic-Yukon-Kuskokwim region have experienced large changes in productivity (Ricker at 

values), including major reductions in the mid-1990s brood years. To estimate the parameters of 

the Ricker stock-recruitment model to use in our simulations, we cast the fitting of that model in 

the form of a Kalman filter, which partitioned the high and low-frequency sources of variation. 

The resulting time trends in smoothed at values indicate that high-frequency year-to-year change 

in recruits per spawner (noise) is small relative to the larger, low-frequency decadal-scale time 

trend in the underlying at values (signal); the latter has greater long-term importance for 

managers.  Such large underlying temporal changes in salmon productivity have been revealed in 

other empirical analyses for 120 pink (O. gorbuscha), chum, and sockeye (O. nerka) salmon 

stocks on the west coast of North America (Peterman et al. 2003; Dorner et al. 2008), including 

these AYK chum salmon stocks. Our Kalman filter results also identified a consistent upward 

trend in productivity starting in the mid-to-late 1990s brood years for the Anvik and Andreafsky 

summer chum stocks, and the Yukon fall chum salmon stocks.  

 

General  

 We drew four main conclusions from our risk-assessment framework, which quantitatively 

compared various management policies and estimated the relative importance of different 

sources of uncertainty on outcomes from those policies. First, the harvest policies we 

investigated appeared robust to simulated decadal-scale variations in population productivity 
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(Ricker a values). For instance, time-invariant management policies (i.e., fixed-escapement 

target and fixed-percentage harvest rates on the fish above that target) maintained average 

escapements, subsistence, and commercial catches at high levels relative to past data.  These 

averages, however, belie the large temporal variability, as measured by the coefficients of 

variation and risk measures.  With a management policy that approximates the existing ADF&G 

escapement range and historical harvest rates, in about a third of the years the escapement target 

would not be met and the commercial fishery would be closed for about half the time.  Our 

results suggest that fixed-escapement policies may not perform well at meeting competing 

objectives, and that the performance of alternative policies should be investigated. 
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 Second, our simulations of both time-invariant and time-varying management policies 

were intended to determine the advantage, if any, of the latter type of policies. We found for 

AYK chum salmon that the time-varying policy did improve values of most performance 

indicators compared with the time-invariant policy, which is consistent with the earlier 

simulations of Peterman et al. (2000). Such time-varying policies are commonplace worldwide in 

fisheries of many marine fish stocks such as groundfish and pelagic fishes (Butterworth and Punt 

1999; Butterworth 2007) and are one example of passive adaptive management in which 

parameters are updated annually as new data are collected (Walters 1986).  Follow-up work 

could include analyzing the sensitivity of the time-varying management policy to different levels 

and patterns of environmental variability.  Different algorithms (alternatives to Eq. 5) could also 

be investigated for updating the management policy with respect to the estimated value of at. 

 Third, regardless of whether time-invariant or time-varying policies are considered, we 

found that outcome uncertainties (which cause realized spawner abundances and harvest rates to 

differ from the targets) had a dominant effect on performance measures of different management 
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policies.  The direct implication is that, although stock assessment models might be improved in 

the future along with their parameter estimates, increases in precision and/or accuracy of the 

resulting scientific advice could be masked by large variations in the harvesting process that tend 

to cause catches and escapements to deviate substantially from values desired by managers. This 

result has also been found in other closed-loop simulations that included outcome uncertainty 

(Peterman et al. 2000; Kell et al. 2005; Dorner et al. 2009). Thus, an important conclusion is that 

to better achieve management objectives, considerable effort should be invested in reducing 

outcome uncertainty, which is usually referred to too narrowly as implementation error (Eggers 

and Rogers 1987) or implementation uncertainty (Rice and Richards 1996).  This can be 

achieved through increased enforcement of regulations, educating users about the value of 

reducing that uncertainty, and improved in-season methods for updating abundance estimates 

and adjusting fishing effort.  
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 Fourth, a key benefit of the contour plots that summarize large numbers of simulations is 

that managers can make well-informed decisions that involve more than one indicator. Trade-

offs among indicators of escapement, subsistence catch, and commercial catch are quantified in a 

way that managers can use cross-hairs plotted at identical x-y coordinate locations for each of the 

nine contour plots to easily read off the contour plots the amount by which one indicator will 

increase when another decreases by a given amount as a result of a change in management 

policy. Each cross-hair represents a specific management policy defined by a target escapement 

and a harvest rate on the number of fish that exceed that target. Managers can also easily 

examine the effect of applying constraint regions that reflect unacceptable values of certain 

indicators. For instance, it may be unacceptable to have more than 50% of the years when 

escapement targets are not met or more than 30% of the years when the subsistence fishery is 
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below the lowest 25th percentile of values achieved historically. Such constraints would create a 

small feasible region within the contour plots for acceptable management actions (target 

escapements and harvest rates). The effect of changing a constraint slightly will also become 

apparent in changes in other indicators. Due to the nonlinear nature of the contour surfaces, some 

cases will likely emerge in which a small change in a constraint on one indicator, along with the 

resulting change in size of the region of feasible management policies, can result in finding a 

policy associated with a large change in another indicator. Iterative explorations of such 

scenarios can serve as an effective focus for discussions among fisheries managers and interest 

groups. Software ("Vismon") has been developed to facilitate such group explorations of these 

simulation results (Booshehrian et al. 2011).  This specialized software also permits examination 

of frequency distributions of indicators across the 500 Monte Carlo trials. 
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 An additional source of uncertainty is structural uncertainty in the population model used 

in the simulations.  For example, we investigated the possibility of depensatory recruitment by 

substituting a depensatory Beverton-Holt model for the Ricker model. The evidence of 

depensation in the stock-recruitment relationships was inconclusive, largely because these chum 

stocks have not been reduced to the levels at which depensation might become apparent if it were 

present.  Thus, because those low abundances were not reached, it is likely that the period of 

reduced productivity in the 1990s was not caused by a depensatory mechanism.  In simulations 

with depensation the general patterns in the performance measures were similar to the case 

without depensation (not shown).  The main differences appeared at low escapement targets and 

high harvest rates, where the stock is likely to be reduced to low levels at which depensation 

becomes important.   
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 It is clear that a quantitative framework for risk assessment and decision making, such as 

the one developed here, can provide powerful assistance to fisheries managers and various 

interest groups when dealing with today's challenging fisheries issues. Not only can several 

sources of natural and human-induced uncertainty be taken into account in analyses of 

management options, but results can be encapsulated in easily understood graphs that can assist 

with evaluations of trade-offs among multiple indicators. Furthermore, uncertainties can be 

identified that have higher priority for management actions to mitigate their effects. Such 

benefits can help improve achievement of fisheries management objectives. 
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Table 1. Definitions of parameters used in the salmon life-cycle model.  Listed in parentheses are 

the equations or figures where each parameter is derived or used. 

Parameters of the Ricker stock-recruitment function  

a  Mean value of the smoothed a-values (Eq. 1) 

b  Ricker b parameter multiplied by 1000 (Eq. 1) 

σv  Standard deviation of uncorrelated errors in the Ricker model (Eq. 1) 

σw  Standard deviation of correlated errors in the random-walk model (Eq. 2) 

σ2
w / σ2

v Signal-to-noise ratio 

  

Parameters of the total harvest  

slope.beforeT    Slope of the total catch vs. run size before 1992 from regression (Fig. 5) 

slope.afterT    Slope of the total catch vs. run size from 1992 and later from regression (Fig. 5) 

interT  y-axis intercept of the total catch vs. run size regression (Fig. 5) 

CVu,T   Coefficient of variation of outcome uncertainty for total catch (Eq. 5) 

Esc. range  ADF&G escapement target or range in thousands of fish (Fig. 6, 7) 

Sm  Escapement for maximum sustainable yield based on Ricker parameters 

  

Parameters of the subsistence harvest 

slopes  Slope of the subsistence catch vs. run size from regression (Fig. 5) 

inters y-axis intercept of the subsistence catch vs. run size from regression (Fig. 5) 

CVu,s  Coefficient of variation of outcome uncertainty for subsistence catch (Fig. 5) 

0.25Cs  Upper end of the lower quartile of observed subsistence catches (Fig. 6, 7, 8) 
670 
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Table 2. Values of stock-specific parameters defined in Table 1 and used in the simulations of 

the AYK chum salmon populations.   

Stock Fall Yukon Anvik Andreafsky Kwiniuk & Tubutulik 

a 1 1.046 1.045 1.144 1.026 

b 1.103 1.243 3.171 17.393 

σv 0.399 0.478 0.427 0.661 

σw 0.283 0.237 0.301 0.183 

σ2
w / σ2

v 0.503 0.246 0.497 0.077 
     
slope.beforeT 0.529 0.369 0.262 0.372 

slope.afterT 0.228 0.133 0.082 0.056 

interT -17.803 -6.798 -0.163 0.315 

CVu,T 0.327 0.353 0.363 0.485 
Escapement-goal   
   range (1000s) 300-600 350-700 65-130 33.8 

Sm 433 361 152.4 25.4 
     
slopes 0.180 0.011 NA 0.019 

inters 2.934 26.446 NA 1.156 

CVu,s 0.405 0.196 NA 0.894 

0.25Cs 24.346 23.747 NA 0.298 
675  

1 a is the mean of at values over the entire time series. 676 

677  
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Figure 1. Map of the Arctic-Yukon-Kuskokwim region showing locations of chum salmon 

stocks used in this study. Map data from www.rivers.gov/maps.html. 

Figure 2. Simulation framework and flowchart for the salmon life-cycle model.  Starting with a 

"user-specified constant escapement goal," the arrows in the middle and to the left define the 

time-invariant management policy.  Starting with an "annual escapement goal as estimated 

by Kalman filter," the arrows in the middle and to the right define the time-varying 

management policy.  Numbers in parentheses refer to equations in the text. 

Figure 3. Smoothed Kalman filter estimates of Ricker at values in units of loge(recruits/spawner) 

(solid dots) and their 95% probability intervals (gray areas) across years of spawning (brood 

years). (a) Fall Yukon, (b) Anvik, (c) Andreafsky, (d) Kwiniuk and Tubutulik chum salmon 

stocks.   

Figure 4. Components of recruitment variation as estimated by Eq. 1 and 2.  White bars are the 

estimated at values; gray bars are the density-dependent term, bSt; and black bars are 

observation errors, vt.  The sum of bars for each brood year is the observed 

loge(Recruits/Spawner).  (a) Fall Yukon, (b) Anvik, (c) Andreafsky, (d) Kwiniuk and 

Tubutulik.  

Figure 5. Chum salmon catches as a function of run size: observed subsistence catches (+); total 

of commercial plus subsistence catch before 1992 (●) and 1992 and later (○).  The straight 

lines are regression fits of catch on run size: dashed line, subsistence catch; solid line, total 

catch before 1992; dot-dash line, total catch 1992 and later. Variability of data around the 

lines is assumed to reflect outcome uncertainty.  (a) Fall Yukon, (b) Anvik, (c) Andreafsky, 
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(d) Kwiniuk and Tubutulik.  From the available data, it was not possible to partition the 

subsistence component of the Andreafsky chum fishery. 
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Figure 6. Performance measures for Yukon River fall chum salmon.  Each combination of 

escapement target and harvest rate describes one time-invariant management policy.  The 

vertical gray lines represent the current escapement-goal range for this stock; the horizontal 

gray lines are the regression slopes between total catch and run size, before 1992 and 1992 

and later (Fig. 5, Table 2).  The mean escapements, subsistence, and commercial catches over 

the 100-yr simulation are in thousands of fish.  Coefficients of variation are percentages.  The 

risk measures are, from top right to bottom right: the percentage of years in which the final 

realized escapement fell below the target set on the x axis; % of years in which subsistence 

catch was less than the lowest 25th percentile of the historically observed subsistence 

catches; and % of years in which the commercial fishery was closed due to an insufficient 

number of returning adults.  All performance measures were averaged over 500 Monte Carlo 

trials. 

Figure 7. Performance measures for the time-invariant management policies applied to Yukon 

River chum salmon with outcome uncertainty removed (CVu,T = CVu,s  = 0).  The vertical 

gray lines represent the current escapement-goal range for this stock; the horizontal gray 

lines are the regression slopes between total catch and run size, before 1992 and 1992 and 

later. The blank area below a harvest rate of 0.2 for the CV of commercial catch occurs 

because the commercial fishery would be closed in all years.  

Figure 8.  Performance measures for two types of management policies for Yukon River fall 

chum salmon.  The time-varying policies (bold lines) update the escapement target each year 

in response to the most recent estimate of the Ricker at value, whereas the time-invariant 
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policies (thin lines) use a fixed escapement target Sm corresponding with the mean Ricker at 

value.  The simulations were conducted both with (solid lines) and without (dashed lines) 

outcome uncertainty in the harvest control function.  
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Environmental variables 

 To identify potential sources of variation in chum salmon productivity, we investigated a 

suite of abiotic and biotic variables that characterize the marine environment of the Bering Sea 

and/or have been linked with Pacific salmon dynamics in other studies.  Because the Kalman 

filter smoothing process tends to filter out high-frequency, interannual variation in at, we used 

the unsmoothed at values of chum productivity for our correlation and regression analyses with 

environmental variables.  Those variables were categorized into five groups: climatic, 

temperature, wind, precipitation, and biotic (Table S1).  Following Shotwell et al. (2005), we 

used a two-stage process to screen the environmental variables.  First, we calculated the 

correlation coefficients between each variable and at at lags of 0 (year of spawning) to 3 (ocean 

residence) years.  From each group of environmental variables, we selected the variable and lag 

with the highest correlation across stocks for potential inclusion in a mixed-effects regression 

with first-order autocorrelated residuals (Venables and Ripley 2002).  Only one variable was 

selected from each of the five groups because the variables within each group tend to be 

positively correlated.  A mixed-effects model is appropriate for these data because Pacific 

salmon stocks have been shown to have coherent responses to environmental variability over the 

spatial scale of the AYK region (Mueter et al. 2002, Dorner et al. 2008).  This regression was 

performed to identify a set of environmental variables that were most strongly associated with 

the observed shifts in chum salmon productivity and that should be investigated further in future 

field research programs.  However, these environmental variables were not used directly in the 

salmon life-cycle simulation model.   
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 Significant relationships were identified between estimated productivity of AYK chum 

salmon and a number of environmental variables (Table S2), showing the influence of those 

conditions on variation in population dynamics of the chum salmon stocks.  None of the random 

effects were significant; only the fixed-effect parameter estimates are reported.  The model 

intercept was very close to 1.0, which is expected because it is related to the mean at (Table 2).  

Productivity was positively related to the Pacific Decadal Oscillation (PDO) at a lag of three 

years and May sea surface temperature (SST) in the Bering Sea at lag 2.  These lags correspond 

with the years of ocean residence of chum salmon.  The at values were negatively related to 

Nome precipitation at lag of 1, which corresponds to the age of freshwater residence and 

migration to salt water.  Finally, chum salmon productivity was negatively related to the run size 

of East Kamchatka pink salmon in the year of spawning, although this effect was not statistically 

significant.  All correlations among regression parameters were low except for the positive 

correlation between the coefficients for the PDO and May SST (Table S2). 
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 The positive relation between Ricker at values and SST during the period of ocean 

residence is consistent with the positive association found by Mueter et al. (2002) for all chum, 

pink, and sockeye salmon in Alaska. Sea-surface temperature is not likely a direct physiological 

limiting factor on survival rate, but rather is more likely an indirect surrogate for oceanographic 

conditions that reflect predator abundance and/or food supply for chum salmon.  Recent warmer 

conditions in the Bering Sea have led to earlier ice retreat and a later bloom with a large copepod 

biomass (Macklin and Hunt 2004).  Thus, warmer conditions may enhance feeding, growth, and 

survival of chum salmon stocks in the AYK region. These correlations are consistent with the 

hypothesis that chum salmon productivity is primarily determined by ocean survival, as opposed 

to freshwater survival (Kruse 1998).  The negative association between the Ricker at values and 
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precipitation at Nome, Alaska, contrasts with the results of Shotwell et al. (2005) in which the 

best model for Yukon River chum salmon included a positive effect of spring precipitation at 

Tanana, Alaska during the freshwater stage.  Precipitation affects flow conditions within the 

rivers during out-migration as well as the degree of stratification in estuaries.  
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Table S1. List of environmental variables and their sources. Month ranges are inclusive. 66 

Category Index Months Source 

Climatic Arctic Oscillation Index, winter Dec.-Feb. 1 

 Arctic Oscillation Index, summer June-Sep. 1 

 Pacific Decadal Oscillation, summer June-Aug. 1 

 Pacific Decadal Oscillation, annual  1 

 Alaska Index Dec.-Mar. 1 

Temperature Air temperature, St. Paul, winter Dec.-Mar. 1 

 Air temperature, St. Paul, annual  1 

 Sea surface temp. in SE Bering Sea May 1 

 Sea surface temperature, Mooring 2 Jan.-Apr. 1 

 Sea surface temperature, Pribilof Is. Jan.-Mar. 1 

Wind Wind mixing index, St. Paul May 1 

 Wind mixing index, Mooring 2 June-July 1 

 Along Peninsula wind stress Nov.-Apr. 1 

 Along Peninsula wind stress May-June 1 

Precipitation Precipitation at Bethel, Alaska Apr.-May 2 

 Precipitation at Nome, Alaska Apr.-May 2 

Biotic East Kamchatka pink salmon returns  3 

1. www.bering.climate.noaa.gov/data/index.php 67 

68 

69 

70 

71 

2. www.wrcc.dri.edu/summary/Climsmak.html 

3. Gregg Ruggerone, Natural Resources Consultants, Inc., 4039 21st Avenue West, Suite 404, 

Seattle, Washington, USA, 98199. Personal communication, 2008. 
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Table S2. Linear mixed-effects model fit by restricted maximum likelihood.  The dependent 

variable is the unsmoothed at value for each stock and year.  Independent variables are the 

annual Pacific Decadal Oscillation, May sea surface temperature, Nome precipitation, and 

abundance of Kamchatka pink salmon, as listed in Table S1. 

72 

73 

74 

75 

76 
77 

 

Parameter estimates:   

Variable Lag (yr) Value Std.Error  t-value p-value 

Intercept NA 0.971  0.153 6.363   <0.0001 

Annual PDO 3 0.110  0.031 3.353   0.0006 

May SST 2 0.067  0.022 3.089   0.0025 

Nome precip.  1 -0.063  0.020 -3.161   0.0020 

Pink salmon 0 -0.0002   0.0004 -0.351   0.7263 
 78 

79 

80 

81 

82 

 

First-order autocorrelation coefficient of the residuals: 0.887 

 

Parameter correlations:  

          Intercept Annual PDO May SST Nome precip. 

Annual PDO      -0.071    

May SST    -0.036   0.355   

Nome precip.  -0.013 -0.150  0.080        

Pink salmon     -0.074   0.149 -0.132  -0.104 

Number of observations: 120, Number of groups: 4, Degrees of freedom: 112, r2: 0.21 83 

84 
85 

86 
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Harvest Control Function 87 

88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
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110 
111 
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114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 

137 

get.catch <- function(ret) { 
 # Function to calculate catch as a function of run size (ret) 
 # Written by Jeremy Collie on 26 February 2008 at SFU 
 # Modified on 28-Feb-08 to include outcome uncertainty 
 # This example uses the parameters for the Anvik stock from Table 2. 
 # Parameters of the harvest rules 
 # 
 # Total fishery (commercial plus subsistence) 
 # input total harvest rate (slope of total catch on return regression) 
 slope1 <- 0.369 
 # input escapement target (x-intercept) for the time-invariant policy  
 x1 <- 154.644 
 # maximum total harvest rate is needed because of outcome uncertainty 
 hr.tot <- 1.0 
 #  coefficient of variation of outcome uncertainty for the total fishery 
 sigma.t <- 0.353 
 # 
 # Subsistence fishery 
 # subsistence harvest rate (slope of catch on return regression)  
 slope2 <- 0.0105 
 # y-intercept of subsistence catch on return regression 
 inter2 <- 26.446 
 # maximum observed subsistence harvest rate  
 hr.sub <- 0.121 
 # CV of outcome uncertainty for the subsistence fishery 
 sigma.s <- 0.197 
 # 
 # Set commercial catch to zero if the return is below the target 
 commercial <- 0 
 # If the return is below x1 there is only subsistence catch 
 # with a random uniform outcome uncertainty after Eggers (1993) 
 if(ret <= x1) subsistence <- ret * runif(1, max = hr.sub) 
 #  
 # If the return exceeds x1 there is subsistence and commercial catch 
 # with normal outcome uncertainty  
 if(ret > x1) { 
  subsistence <- (inter2 + ret * slope2) * (1+rnorm(1, sd = sigma.s)) 
  hrate <- subsistence/ret 
  if(hrate > hr.sub) 
   subsistence <- hr.sub * ret 
  total <- (ret - x1) * slope1 * (1+rnorm(1, sd = sigma.t)) 
  hrate <- total/ret 
  if(hrate > hr.tot) 
   total <- hr.tot * ret 
  commercial <- max(0, total - subsistence) 
 } 
 c(subsistence, commercial) 
} 
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Figure S1.  Simulated subsistence (a,b) and commercial (c,d) catches as a function of run size for 

the Anvik stock.  All units are thousands of salmon.  Run size is plotted on two scales: below 

(a,c) and above (b,d) 500 thousand.  Below the escapement target (in this example 155,000 

spawners) there is only subsistence catch, with the harvest rate calculated from a uniform 

distribution.  Above the escapement target, there is both subsistence and commercial catch, 

calculated from the input harvest rates with normally distributed outcome uncertainty.  The box 

plots summarize the results of 100 random simulations: white lines are median catches; solid 

boxes are interquartile ranges; whiskers extend to 1.5 times the interquartile range; horizontal 

lines beyond the whiskers are outliers.
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Supplementary Contour Plots 149 

150 

151 

152 

 Contour plots of nine performance indicators for the three other populations of chum 

salmon in the AYK region: Andreafsky (Figure S2), Anvik (Figure S3), and Kwiniuk and 

Tubutulik (Figure S4). See Fig. 6 for full explanation of performance measures and x and y axes.  
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Figure S2. Performance measures for time-invariant management policies applied to Andreafsky 

River chum salmon.  The harvest parameters for the subsistence fishery were assumed to be the 

same as those for the neighboring Anvik stock because empirical data for the subsistence catch 

of the Andreafsky stock were not available. 
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Figure S3. Performance measures for time-invariant management policies applied to Anvik River 

chum salmon. 
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Figure S4. Performance measures for time-invariant management policies applied to the 

combined Kwiniuk River and Tubutulik River chum salmon. 
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