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Population diversity in Kuskokwim Chinook:
New findings on trade-offs for different harvest strategies

protecting population diversity is recognized in 
fisheries management policies such as Alaska’s 
Sustainable Salmon Policy. 

When mixed-stock fisheries for multiple 
populations overlap in space and time there can 
be an inherent conflict between harvest rates and 
population diversity: high harvest rates, which can 
be sustained by the most productive populations, 
can come at the cost of increased risk of overfishing 
less productive ones (Figure 2).

Despite the potential importance of these harvest-
population diversity tradeoffs, Chinook salmon 
management, including in the large river basins of 

Variation among salmon populations in their 
productivity, carrying capacity and life history 
characteristics (population diversity) contributes 
to stable fisheries as a result of portfolio effects, 
whereby fisheries that harvest multiple populations 
benefit from the averaging effects of their variable 
dynamics (Figure 1). This diversity also supports 
fishery resilience because typically at least some 
populations will do well when others do not and 
populations that are less productive today might 
be more productive under future conditions.

As a result population diversity is increasingly 
viewed as a foundation of sustainable and resilient 
resource management and the importance of 

Figure 1. Illustration of how population diversity 

contributes to harvest stability. When diversity 

is high, individual populations doing very well 

can compensate for those that are doing poorly, 

leading to a more stable harvest over time. When 

diversity is low, harvests are more variable 

because there are fewer populations to buffer the 

effects of a variable environment.

A research team funded by the Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative used estimates of 
Chinook population diversity to build computer simulations that evaluated how well alternative harvest 
policies meet Chinook population diversity and fishery objectives in the Kuskokwim.
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Western Alaska and the Yukon, does not often explicitly consider them.  To help address this knowledge 
gap we characterized the degree of Chinook population diversity within the Kuskokwim River basin by 
fitting spawner-recruitment models to all available tributary level data on Chinook escapement along 
with estimates of age composition and total harvest (13 populations accounting for approximately half of 
the total production from the Kuskokwim). We found clear evidence of population diversity in the system 
where population productivity and size were estimated to vary by as much as 3-fold and 18-fold among 
populations, respectively (Figure 3).

Figure 2. Relationship between long-term 

mixed-population harvest and risks to individual 

populations across a range of long-term average 

harvest rates. Overall harvest from the system 

is predicted to increase as the average harvest 

rate increases up to a point, after which it 

rapidly declines because most populations are 

overfished and then driven to extinction. This 
figure illustrates that you have to be willing 
to accept some risk to the weakest (least 

productive) populations if you want to maximize 

total harvest from the system.

Figure 3. Chinook population 

diversity in the Kuskokwim River 

basin. Each polygon depicts the 

general spawning distribution 

of the 13 Chinook populations 

for which there are estimates 

of spawner abundance based 

on either weir (points) or aerial 

(thick line) surveys. Populations 

are color coded by their 

productivity (recruits produced 

per spawner at small population 

size) and estimated average 

population size (predicted in 

absence of fishing) is listed 
next to each system’s name. 

This biodiversity emphasizes 
that large populations are 

not necessarily the most 

productivity, and vice-versa. 
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 We used estimates of Chinook population diversity 
to build computer simulations that evaluated how 
well alternative harvest policies (defined by basin 
wide escapement and harvest goals) meet Chinook 
population diversity and fishery objectives in 
the Kuskokwim. We found that harvest policies 
focused on meeting minimum subsistence needs 
were unlikely to jeopardize long-term prospects 
for basin-wide sustainable use. However, Chinook 
population diversity gives rise to asymmetric trade-
offs among fishery and conservation objectives 
in the Kuskokwim. For example, relative to a 
harvest policy that seeks to maximize mixed-stock 
harvests, foregoing relatively small amounts of 
mixed-stock harvest is predicted to yield relatively 
large increases in the chances of ensuring equitable 
access to Chinook (i.e., meeting tributary goals) 
and to nearly eliminate biological risks to weak 
populations (Figure 4).

The approach we developed for the Kuskokwim 
provides a general framework for characterizing 
salmon population diversity in large river basins 
and evaluating harvest-population diversity trade-
offs among alternative harvest policies within 
them. With support from AYK-SSI we are now 
exploring Chinook salmon population diversity 
in the Yukon River basin. Ongoing research 
analyzing Chinook salmon ear stones (otoliths) in 
the Kuskokwim and Yukon suggests that different 
parts of these large watersheds are hot spots for 
salmon production and growth, and that favorable 
locations change year to year. Together with 
our efforts to characterize Chinook population 
diversity, this research emphasizes the importance 
of protecting and monitoring salmon habitats and 
populations (both large and small) throughout 
these large free flowing river basins to maximize 
their resilience to environmental change and the 
benefits communities derive from them. 

Figure 4. Illustration of the predicted performance of two 

alternative harvest policies for Kuskokwim Chinook. Policy 

1 seeks to maximize total mixed-population harvest while 

Policy 2 seeks to maximize harvests only once the risk 

of driving the weakest populations extinct is minimized. 

Shown for each policy is (1 – top panel) the predicted 

average harvest, (2 – middle panel) proportion of 

individual populations whose average spawner abundance 

is above a population (or tributary) level goal which is also 

a proxy for equitable access to Chinook, and (3 – lower 

panel) the proportion of populations predicted to be driven 

to extinction.     
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II. ABSTRACT:  

Variability among fish populations in ecological characteristics and productive capacity (i.e., population 
diversity) can be critical to maintaining resilience to environmental change and to dampening variability 
in harvest for fisheries that depend upon them. However, when fisheries for multiple populations 
overlap in space and time there can be an inherent conflict between mixed-stock harvest and 
population diversity: high harvest rates, which can be sustained by the most productive populations, can 
come at the cost of increased risk of overfishing those that are less productive. The importance of these 
harvest-population diversity trade-offs in salmon management is well-recognized, but they are difficult 
to characterize due to incomplete information, and they are not often explicitly evaluated in 
contemporary fisheries management. We developed an integrated age-structured multi-population 
state-space spawner-recruit model and fitted it to data from 13 Chinook salmon populations from the 
Kuskokwim drainage in western Alaska.  We found clear evidence of population diversity in the system 
where productivity and carrying capacity can vary by as much as 3-fold and 18-fold among populations, 
respectively. Simulation testing of the model illustrated that it was largely unbiased with respect to 
leading parameters, abundance states, and derived biological reference points, whereas more 
commonly applied regression-based approaches showed substantial bias. We used the state-space 
model to parameterize closed-loop simulations that evaluated how well alternative harvest policies 
meet Chinook population diversity and fishery objectives in the Kuskokwim. We found that Chinook 
population diversity gives rise to asymmetric trade-offs among fishery and conservation objectives 
whereby foregoing relatively small amounts of mixed-stock harvest resulted in relatively large increases 
in the chances of ensuring equitable access to Chinook (i.e., meeting tributary goals) and nearly 
eliminated the risk of weak stock extirpation. We also found that harvest policies focused on meeting 
minimum subsistence needs were unlikely to jeopardize long-term prospects for basin-wide sustainable 
use. The fishery and biological performance of alternative harvest policies, and the magnitude of 
resulting trade-offs, were moderately sensitive to potential future changes in population productivity 
and capacity and to uncertainty in the underlying drivers of recruitment variation. Our approach 
provides a general framework for characterizing salmon population diversity in large river basins and 
evaluating harvest-population diversity trade-offs among alternative harvest policies within them. 

III. PROJECT EVALUATION: 

Our original proposal had six objectives; a seventh objective was added in consultation with the AYK-SSI  
Science Coordinator as the project was being carried out. These objectives, and our progress towards 
meeting them, are described below.  

Objective 1: To determine the shape of the relationship between spawner abundance and adult 
recruitment for each individual Chinook spawning population in the Kuskokwim watershed. 

We met this objective by developing an integrated age-structured multi-population state-space spawner-
recruit model modelling framework that is described in detail in the manuscript in Appendix A. See Figure 
5 in the manuscript for an illustration of the inferred shape of these relationships across a range of 
alternative model formulations. Simulation testing of the model illustrated the state-space model was 
largely unbiased with respect to leading parameters, abundance states, and derived biological reference 
points, whereas more commonly applied regression-based approaches showed substantial bias.   

Objective 2: To determine the predicted average annual fishery yield across all Kuskokwim Chinook 
populations - the sum of the equilibrium harvest that each population could sustain, and the 
proportion of populations that are predicted to not be overexploited - in order to evaluate the 



tradeoff between harvest and conservation of population diversity across a range of mixed-
population harvest rates. 

We met this objective as detailed in the manuscripts in Appendix A and B (see for example Figure 7 in 
Appendix A and Figure 3 in Appendix B). 

Objective 3: To determine the extent to which the erosion of population diversity resulting from 
overharvest of weak populations may limit long-term fishery yield under changing environmental 
conditions that might favor what are now weak populations over those that are currently strong. 

We met this objective by developing empirically parameterized closed-loop simulations of the Kuskokwim 
system where we evaluated the fishery and biological consequences of alternative harvest policies under 
a scenario with large future change in Chinook population diversity (i.e., weak populations became 
strong, and strong ones became weak). We found that when the environment drives pronounced shifts 
over time in the size and productivity of populations in the system (e.g., a regime shift) giving up a 
specific amount of harvest results in larger gains in spatial equity in access to the salmon for subsistence 
needs relative to scenarios where there is not a regime shift. These findings are described in detail in the 
manuscript in Appendix B. 

Objective 4: To determine both fishery manager and stakeholder perspectives on acceptable 
conservation constraints (i.e., which point[s] on the curve in Figure 1 is acceptable) and fishery 
objectives (e.g., minimize frequency of fishery closures) in order to inform the estimation of optimal 
harvest policies in objective 5. 

We met this objective by piggy backing on a broader exercise focused on building capacity among 
Kuskokwim stakeholders to engage in salmon management through a series of workshops with 
influential community members from throughout the river basin with a long history of active 
engagement in fishery management as well as US Fish and Wildlife Service and Alaska Department of 
Fish and Game biologists and fishery managers. These workshops included discussion of existing and 
potential Kuskokwim Chinook fishery and biological objectives and alternative management actions 
associated with them. From these discussions, we identified a suite of long-term objectives against which 
to quantify the performance of alternative management actions in the system. This is detailed in the 
manuscript in Appendix B. 

Objective 5: To determine optimal harvest policies for Kuskokwim Chinook based upon the magnitude 
of persistent productivity changes in Kuskokwim Chinook and the conservation constraints and 
fishery objectives from Objective 4.  

We met this objective by quantifying the performance of alternative harvest policies against objectives 
from Objective 4 using closed-loop simulations across a range of plausible hypotheses representing 
alternative states of nature. This is detailed in the manuscript in Appendix B. It is important to note 
however that our analysis do not identify an “optimal” strategy but instead help uncover trade-offs 
amongst objectives across a range of strategies. 

Objective 6: To determine the harvest and population diversity costs of assuming Kuskokwim Chinook 
recruitment is driven by (1) over-compensatory processes or (2) extrinsic environmental forcing 
when the alternative hypothesis is true.  

We fully met this objective by quantifying the performance of alternative harvest policies against the 
objectives from Objective 4 using closed-loop simulations for scenarios where recruitment is driven by 
either over-compensatory processes or extrinsic environmental forcing that gives rise to the appearance 
of overcompensation. We found that absolute harvest and its inter-annual stability were predicted to be 
lower, and that more harvest had to be foregone to minimize extirpation risk and increase chances of 



ensuring equitable access to Chinook, under the extrinsic environmental forcing scenario relative to the 
over-compensatory one. These findings are detailed in the manuscript in Appendix B. 

Objective 7: To generate infographics that communicate key insights from the proposed research. 

We met this objective by developing a web-based tool that allow for interactive visualization of the 
conservation and fishery outcomes of our closed-loop simulations (see deliverables). In addition we 
generated numerous figures and visuals for the manuscripts and associated presentations that helped to 
communicate key insights from the proposed research (see figure in Appendix A, B and C). 

IV. DELIVERABLES:  

The findings of our project have been, and will continue to be, disseminated via conference 
presentations, management meetings and peer-reviewed manuscripts. To date we have given six 
presentations and attended five meetings where we have presented and discussed our research.  We 
anticipate submitting two manuscripts by the fall of 2019 and further refining the web visualization. 
Copies of presentations are available from the project PIs upon request. 

Presentations: 
Staton B., M. Catalano, B.M. Connors, L. Coggins, M. Jones, C. Walters, S. Fleischman and D. Gwinn.  

2019. State-space models for estimating population diversity in mixed-stock Pacific salmon fisheries.  
American Fisheries Society Annual Meeting. 

Staton B., M. Catalano, B.M. Connors, L. Coggins, M. Jones, C. Walters, S. Fleischman and D. Gwinn 2019. 
Assessment approaches for mixed-stock Pacific salmon fisheries: Empirical and simulation-estimation 
applications. Auburn University; dissertation seminar 

Connors B. M., L. Coggins, B. Staton, C. Walters, M. Jones, M. Catalano and J. Harding. 2018. 
Incorporating harvest-population diversity tradeoffs into salmon management in large river basins: 
insights from Chinook in the Kuskokwim and Yukon River Basins. Western Division American Fisheries 
Society Meeting. 

Connors B. M., L. Coggins, B. Staton, C. Walters, M. Jones, M. Catalano and J. Harding. 2018. 
Incorporating harvest-population diversity tradeoffs into salmon management in large river basins: 
insights from Chinook in the Kuskokwim and Yukon River Basins. Institute of Ocean Sciences. 

Staton B., M. Catalano, B.M. Connors, L. Coggins, M. Jones, C. Walters, S. Fleischman and D. Gwinn 2017. 
Problems and solutions in the assessment of mixed-stock salmon fisheries. University of British 
Columbia. 

Connors B. M., L. Coggins, B. Staton, C. Walters, and M. Jones. 2016. Incorporating harvest-population 
diversity trade-offs into salmon management. Canadian Conference for Fisheries Research. 
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Draft manuscripts: 
Staton B., M. Catalano, B.M. Connors, L. Coggins, M. Jones, C. Walters, S. Fleischman and D. 

Gwinn. In preparation. Evaluation of methods for quantifying population diversity in mixed-
stock Pacific salmon fisheries. 



Connors B. M., B. Staton, L. Coggins, C. Walters, M. Jones, D. Gwinn, M. Catalano and S. 
Fleischman. In preparation. Incorporating harvest-population diversity trade-offs into salmon 
management in large river basins: a case study of Kuskokwim River Chinook.  

Final manuscripts will be provided to AYK-SSI once published. 

Online visualizations: 
An interactive online visualization of the results of the harvest policy analysis detailed in Appendix B can 
be found at: 
https://brendanmichaelconnors.shinyapps.io/kuskokwimShinyApp/ 
These visualizations will continue to be developed until the manuscript they are associated with is 
published. 
 
Meetings:  
2015. National Fish and Wildlife Federation Capacity Building Workshop no. 1. Aniak, Alaska 
2016. National Fish and Wildlife Federation Capacity Building Workshop no. 2. Anchorage/Bethel, Alaska 
2016. National Fish and Wildlife Federation Capacity Building Workshop no. 3. Bethel, Alaska 
2017. National Fish and Wildlife Federation Capacity Building Workshop no. 4. Bethel, Alaska 
2017. Salmon Harvest Trade-offs workshop. Anchorage, Alaska 

Reports: 
Semiannual progress reports July 2015, January and July 2016, 2017, and 2018. 

V. PROJECT DATA SUMMARY: 

The raw data used in the run-reconstructions and spawner-recruitment analyses described in Appendix 
A were sourced from the Alaska Department of Fish and Game. These data and source code for the 
analyses performed in Appendix A can be found in the html supplement provided with this report 
(Appendix_A_online_supplement_S2.4.html). Source code for the closed-loop simulations performed in 
Appendix B, can be found at: https://github.com/brendanmichaelconnors/Kusko-harvest-diversity-
tradeoffs 

Note that the source code for the manuscripts in Appendices A and B will continue to be refined until 
the manuscripts are published.  

VI. APPENDICES: 

Appendix A: Evaluation of Methods for Quantifying Population Diversity in Mixed-stock Pacific Salmon 
Fisheries 

Appendix B: Incorporating harvest-population diversity trade-offs into salmon management in large 
river basins: a case study of Kuskokwim River Chinook 
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Abstract1

Populations harvested in mixed-stock Pacific salmon fisheries show diversity in genotypic,2

behavioral, and life history characteristics which can lead to heterogeneity in productivity3

and population size. Methods to quantify this heterogeneity within mixed-stocks are not4

well-established but are required for full acknowledgement of trade-o�s when setting harvest5

policies. We developed an integrated age-structured state-space model that allows for more6

complete use of available data and sharing of information than simpler methods. We developed7

a suite of state-space models of varying structural complexity for comparison to simpler8

regression-based approaches and fitted them to data from 13 Chinook Salmon populations in9

the Kuskokwim drainage in western Alaska. We found biological and policy conclusions were10

largely consistent between state-space models but di�ered strongly from regression-based11

approaches. Simulation trials illustrated our state-space models were largely unbiased with12

respect to leading parameters, abundance states, and derived biological reference points,13

whereas the regression-based approaches showed substantial bias. These findings suggest our14

state-space model shows promise for informing harvest policy evaluations in the context of15

harvest-biodiversity trade-o�s in mixed-stock salmon fisheries.16
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1 Introduction17

Many Pacific salmon Oncorhynchus spp. populations in large drainage systems are commonly18

harvested in a relatively small spatial area and are managed as a single stock. However,19

these “stocks” are instead stock-complexes, in which the aggregate stock is composed of20

several (and sometimes, many) substocks, hereafter referred to as “populations.” These21

populations can vary in genotypic (Templin et al. 2014), phenotypic (e.g., morphology;22

Hendry and Quinn 1997), behavioral (e.g., run timing; Clark et al. 2015; Smith and Liller23

2017a,b), and life history (e.g., age-at-maturation, Blair et al. 1993) characteristics that are24

the result of adaptations to local environments after many generations of high spawning-site25

fidelity and reproductive isolation from conspecifics in other tributaries located within the26

same basin. It has been widely proposed that maintaining this diversity of local adaptation27

(hereafter, “biodiversity”) is favorable both from ecosystem and exploitation perspectives.28

One argument is that in a system where many parts contribute to the whole, the variability29

in the aggregate characteristics can be dampened due to asynchrony in the subcomponent30

dynamics, a phenomenon commonly referred to as the “portfolio e�ect” (Schindler et al. 2010,31

2015).32

Diversity in these population characteristics can ultimately lead to heterogeneity in33

their productivity (Walters and Martell 2004). Productivity in this context (hereafter, –)34

is the ability of a population to replace itself after harvesting or some other perturbation,35

often represented for salmon populations as the maximum number of future returning adults36

(recruits) produced by one spawner, which is attained at low spawner abundances due37

to density-dependent survival. Populations j with higher –j values can sustain greater38

exploitation rates (U) than those with smaller –j values; –j can be expressed in terms of39

the exploitation rate that maximizes sustained yield from population j (U
MSY,j; Schnute and40

Kronlund 2002):41
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(1) –j = eUMSY,j

1 ≠ U
MSY,j

.

Given that there is likely some level of heterogeneity in –j and U
MSY,j among individual42

populations, the logical conclusion is that in a mixed-stock fishery where the exploitation43

rate in year t is common among all populations, some weaker populations must be exploited44

at Ut > U
MSY,j in order to fish the more productive populations at U

MSY,j. This of course45

implies a trade-o�, such that it may be necessary to over-exploit some populations in order46

to maximize harvest benefits from others.47

Before these trade-o�s can be considered by managers in a well-informed way, the48

shape and magnitude of the trade-o� must first be quantified. These trade-o�s are typically49

expressed as the amount of mixed-stock harvest that must be foregone to reduce the number50

or fraction of populations at risk of overfishing or extirpation (Walters and Martell 2004;51

Walters et al. 2018). However, to conduct these assessments, the estimated productivity52

and carrying capacity of all (or a representative sample) of the populations contributing53

harvest to a mixed-stock fishery. Using a set of assumptions about the underlying population54

dynamics, these quantities are obtained via spawner-recruit analysis, which involves tracking55

the number of recruits produced in each brood year by the number of fish that spawned in56

that same year and fitting a curve to the resulting pattern. Other methods exist for obtaining57

estimates of population-level parameters, such as habitat-based methods (e.g., Lierman et al.58

2010; Parken et al. 2006), but spawner-recruit analyses provide other information such as59

estimates of variability in recruitment anomalies and maturation schedules, which may be60

useful for forecasting (e.g., Murphy et al. 2017) or parameterizing operating models for use61

in closed-loop policy evaluations (e.g., Cunningham et al. 2018a; Catalano and Jones 2014;62

Connors et al. nd).63

The spawner-recruit literature is extensive, but focuses primarily on assessing popu-64
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lations or stocks as a whole, as opposed to population components (but see the work on65

Skeena River, British Columbia sockeye salmon O. nerka populations; Korman and English66

2013; Walters et al. 2008). Population-specific analyses are uncommon because of two fac-67

tors: (1) the data to conduct well-informed population-specific spawner-recruit analyses68

are often unavailable (20 – 30 years of continuous spawner and harvest counts/estimates69

and age composition for each population) and (2) management actions in large mixed-stock70

fisheries may not be dexterous enough to deliberately exert higher exploitation rates on more71

productive populations even if the nature of the trade-o� was known perfectly. Regarding72

the former reason, there are some cases where the data do exist to perform these kinds73

of analyses (e.g., the Kuskokwim River Chinook salmon O. tshawytscha stock in western74

Alaska is used here as case study), however methods to conduct mixed-stock spawner-recruit75

analyses are not well-developed. Regarding the latter, even in cases where management76

cannot target particular populations over others, understanding the nature of the trade-o�s77

can be informative for evaluating candidate harvest policies for the mixed-stock in the context78

of population biodiversity (Walters et al. 2018).79

Methods to fit spawner-recruit models can be grouped into two broad categories:80

regression-based approaches (e.g., Clark et al. 2009) and state-space (i.e., time series) models81

(e.g., Fleischman et al. 2013; Su and Peterman 2012). The regression-based approaches82

treat spawner-recruit pairs as independent observations, and are thus subject to the pitfalls83

of dealing with the inherent time-dependent properties and oftentimes large amounts of84

observation error found in spawner-recruit data sets (Walters and Martell 2004, Ch. 7).85

The consequence of ignoring the first issue is “time-series bias”, which causes positive biases86

in – and negative biases in —, resulting in the same directional biases in U
MSY

and S
MSY

,87

respectively (i.e., spuriously providing too aggressive harvest policy recommendations; Walters88

1985). The second is known as “errors-in-variables bias” and is known to cause an apparent89

scatter which inserts additional variability that commonly used regression estimators do not90

account for and can also lead to positive biases in – (Ludwig and Walters 1981). Though91
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these methods have been known for their problems for over 30 years, they are still somewhat92

widely used (e.g., Clark et al. 2009; Korman and English 2013). Unlike the regression-based93

approaches, the state-space class of models attempts to capture the process of recruitment94

events leading to future spawners while simultaneously accounting for variability in the95

biological and measurement processes that gave rise to the observed data (de Valpine and96

Hastings 2002; Fleischman et al. 2013). For these reasons, state-space spawner-recruit97

analyses have rapidly gained popularity, particularly in Alaska (Fleischman et al. 2013;98

Staton et al. 2017; Su and Peterman 2012). This level of additional model complexity comes99

at computational costs, as these models are well-suited for Bayesian inference with Markov100

Chain Monte Carlo (MCMC) methods (Newman et al. 2014, Ch. 4), but have been shown to101

reduce bias in estimates in some circumstances relative to regression-based approaches (Su102

and Peterman 2012; Walters and Martell 2004).103

In cases where data are available to perform mixed-stock spawner-recruit analyses on a104

population-specific basis, it is di�cult to know which assessment method is most appropriate.105

Two prevalent issues arise which may benefit from the development of a mixed-stock state-106

space spawner-recruit model that simultaneously estimates population dynamics parameters,107

recruitment states, and biological reference points on a single population and aggregate108

mixed-stock basis. First, reconstructing population-specific recruitment time series is di�cult109

without genetic stock identification (Cunningham et al. 2018b; Michielsens and Cave 2018;110

Beacham et al. 2004) of the populations contributing to in the mixed-stock harvest, because111

they are otherwise assessed primarily in aggregate. This situation requires assumptions112

about the relative exploitation rates experienced by each population, and an approach113

that integrates the population-specific dynamics into one model can provide flexibility and114

transparency in how these simplifications are made. Second, available population-specific115

data are generally escapement time series, whether they are cenuses, indices, or estimates. In116

cases where reasonably long time series (20+ years) are available for a significant portion117

(>50%) of the populations in a mixed-stock, it is common to have non-contiguous sampling118
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data. An additional benefit of integrating the analysis in a time series framework may119

be the ability to share information between populations by exploiting patterns in their120

recruitment covariance. Inappropriate treatment of either factor may render the final121

estimates of population parameters inappropriate for management use, thus the sensitivity122

and performance of a variety of approaches should be assessed, including an integrated123

state-space model.124

In this article, we evaluate the performance of a range of assessment models for125

mixed-stock salmon fisheries via simulation-estimation and apply them to Chinook salmon126

populations in the Kuskokwim River in western Alaska as a case study. Our objectives were127

to:128

(1) develop a set of varyingly complex mixed-stock versions of state-space spawner-recruit129

models,130

(2) determine the sensitivity of biological and trade-o� conclusions to assessment model131

complexity (including those obtained using regression-based approaches) using empirical132

data from Kuskokwim River Chinook salmon populations, and133

(3) test the performance of the assessment models via simulation-estimation trials.134

2 Methods135

We conducted our analysis in two parts to evaluate the sensitivity and performance of136

assessment strategies for the mixed-stock Pacific salmon fisheries. First, all assessment137

methods (two regression-based and four state-space models) were fitted to observed data138

from the Kuskokwim River populations (nj = 13) to determine the extent to which the choice139

of assessment model structure influences biological and management conclusions with real140

data. Next, a hypothetical salmon system composed of several age-structured populations141

and with known properties, subjected to observation with error and inconsistent sampling142
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frequencies, and then all models were fitted to each simulated data set. Lastly, we quantified143

model performance based on the bias and precision of quantities with relevance to mixed144

harvest management (e.g., U
MSY

and S
MSY

).145

2.1 Mixed-stock spawner-recruit models146

2.1.1 Regression-based models147

Two regression-based approaches for estimating Ricker (1954) spawner-recruit parameters148

on a population-specific basis were assessed: (a) a single mixed-e�ect regression model with149

random intercepts (also referred to as a hierarchical model) and (b) independent regression150

models. The Ricker spawner-recruit model can be written as:151

(2) Ry = –Sye≠—Sy+Áy

where Ry is the total recruitment produced by escapement Sy in brood year y, – is the152

maximum expected recruits per spawner (RPS), — is the inverse of the escapement that is153

expected to produce maximum recruitment (S
MAX

), and Áy are mean zero deviations from154

the expected curve often assumed to be attributed to environmentally driven fluctuations in155

juvenile survival. Primary interest lies in estimating the population dynamics parameters –156

and — as they can be used to obtain biological reference points from which sustainable harvest157

policies can be developed. The Ricker function in (2) is increasing at small escapements and158

declining at large ones, and it can be linearized:159

(3) loge(RPSy) = loge(–) ≠ —Sy + Áy,
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allowing for estimation of the parameters loge(–) and — in a linear regression framework using160

the least squares method or likelihood methods under the assumption that Áy ≥ N(0, ‡2

R)161

(Clark et al. 2009; Hilborn and Walters 1992). This relationship is nearly always declining,162

implying a compensatory e�ect on juvenile survival (i.e., RPS) with reductions in spawner163

abundance (Rose et al. 2001). Obtaining the Ry component of RPSy can be problematic for164

salmon populations that mature at multiple ages (like Chinook salmon, for which we have165

incorporated ages four to seven) given the prevalence of non-consecutive sampling years of166

either age composition or escapement data. For fitting regression models, only brood year167

recruitment events were used in which all contributing ages were observed. For example,168

to include brood year recruitment for 2010 in the model, escapement data must have been169

available for calendar years 2014 – 2017, as well as in 2010 to complete the pair.170

A mixed-stock formulation of this model can be expressed by including population-171

specific random e�ects on the intercept [loge(–)]:172

loge(RPSy,j) = loge(–j) ≠ —jSy,j + Áy,

loge(–j) = loge(–) + Á–,j,

Á–,j ≥ N(0, ‡2

–).

(4)

It would be nonsensical to include population-level random e�ects on the slope, given173

that — is a capacity parameter related to the compensatory e�ect of habitat and resource174

limitation experienced by juveniles, likely in the freshwater environment (i.e., amount of175

habitat as opposed to quality of habitat). Fitting the individual population models in this176

hierarchical fashion allows for the sharing of information such that the more intensively177

assessed populations can help inform those that are more data-poor.178

The mixed-e�ect model may have the benefit of sharing information to make some179

populations more estimable, but it should also have the tendency to pull the extreme –j180
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(those in the tails of the hyperdistribution) toward –. This behavior may not be preferable for181

policy recommendations, as it should tend to dampen the extent of heterogeneity estimated in182

–j. For this reason, independent regression estimates for each population were also obtained183

for evaluation. In estimating the parameter loge(–), a lower bound constraint of zero was184

used in all regression models. This was necessary to prevent the models from estimating185

biologically implausible parameters: if loge(–) < 0, then no amount of spawners would be186

expected to replace themselves (let alone provide surplus) in their most productive state, in187

which case the population would not likely be in existence.188

2.1.2 State-space models189

We developed four versions of the state-space formulation. As three versions were simplifi-190

cations of a more full model, the full model is presented completely here and the changes191

resulting in the other three model structures are described following the description of the192

full model.193

The state-space formulation of the mixed-stock spawner-recruit analysis developed and194

evaluated here is an extension of various single-stock versions (e.g., Fleischman et al. 2013).195

Walters et al. (2008) used a similar model using maximum likelihood methods to provide196

estimates of >50 populations in the Skeena River drainage, British Columbia. The model197

presented here was fitted with Bayesian methods using program JAGS (Plummer 2017),198

and allows for relaxation of certain assumptions made by Walters et al. (2008) such as the199

important notion of all populations having the same recruitment residual time series (i.e.,200

anomalies – deviations from the expected population response).201

The state-space model is partitioned into two submodels: (a) the process submodel202

which generates the latent (i.e., true but unobserved) states of Ry,j and the resulting calendar203

year states (e.g., St,j) and (b) the observation submodel which fits the latent states to the204

observed data (notation summarized in Tables 1, 2). Note that this method does not require205
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excluding brood year recruitment events that were not fully observed as was necessary for206

the regression-based models.207

The recruitment process operated by producing a mean prediction from the deterministic208

portion of the Ricker relationship in (2) for ny brood years for each of the nj populations.209

From these deterministic predictions, auto-correlated process variability was added to generate210

the realized latent recruitment states. To populate the first na calendar year abundance211

states with recruits of each age a, the first amax brood year expected recruitment states212

were not linked to a spawner abundance through (2) (because the Sy component was not213

observed), but instead were assumed to have a constant mean equal to the unfished equilibrium214

recruitment (where non-zero Sj produces Rj = Sj when unexploited and in the absence of215

process variability):216

(5) Ṙy,j = loge(–j)
—j

,

where Ṙy,j is the expected (i.e., deterministic) recruitment in brood year y from population217

j with Ricker parameters –j and —j. The remaining ny ≠ amax brood years had an explicit218

time linkage:219

(6) Ṙy,j = –jSt,je
≠—jSt,j ,

where t = y ≠ amax is the tth calendar year index in which the escapement produced the220

recruits in the yth brood year index.221

From these deterministic predictions of the biological recruitment process, lag-1 auto-222

correlated process errors were added to produce the latent states:223
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(7) loge(Ry,1:nj ) ≥ MVN
1
loge(Ṙy,1:nj ) + Êy,1:nj , �R

2
,

where224

(8) Êy,1:nj = „
1
loge(Ry≠1,1:nj ) ≠ loge(Ṙy≠1,1:nj )

2
,

and Ry,1:nj is the vector of latent recruitment states across the nj stocks in brood year y,225

Êy,1:nj is the portion of the total process error attributable to serial auto-correlation, „ is226

the lag-1 auto-correlation coe�cient (constant across populations), and �R is a covariance227

matrix representing the white noise portion of the total recruitment process variance. In the228

full model, �R was estimated such that each population was assigned a unique variance and229

covariance with each other population. This was achieved by using an inverse Wishart prior230

distribution, with degrees of freedom equal to nj + 1 and the scale matrix populated with231

zero-value elements along the o�-diagonals and each diagonal element equal to one, which232

inserts little information about the covariance matrix �R (Plummer 2017). The multivariate233

normal errors were on the logarithmic scale so the variability on Ry,j was lognormal, which234

is the most commonly used distribution for describing recruitment variability (Walters and235

Martell 2004). Further, the multivariate normal was used as opposed to nj separate normal236

distributions so the degree of synchrony in brood year recruitment deviations (i.e., recruitment237

process errors) among populations could be captured and freely estimated in �R.238

The maturity schedule is an important component of age-structured spawner-recruit239

models, as it determines which calendar years the brood year recruits Ry,j return to spawn240

(and be observed). Recent state-space spawner-recruit analyses have accounted for brood241

year variability in maturity schedules as Dirichlet random vectors drawn from a common242
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hyperdistribution characterized by a mean maturation-at-age probability vector (fi
1:na) and243

an inverse dispersion parameter (D) (see Fleischman et al. 2013; Staton et al. 2017, for244

implementation in JAGS), and the same approach was used for the full model with maturity245

schedules shared perfectly among populations within a brood year. Brood year-specific246

maturity schedules were treated as random variables such that:247

(9) py,a
iid≥ Dirichlet(fi

1:na · D).

where py,a is the probability a fish spawned in brood year y will mature and make the248

spawning migration at age a.249

In order to link Ry,j with calendar year observations of escapement from each population,250

Ry,j was allocated to calendar year runs-at-age (Nt,a,j) based on the maturity schedule:251

(10) Nt,a,j = Rt+na≠a,jpt+na≠a,a,

and the total run returning to population j in year t was the sum of mature fish within a252

calendar year across ages:253

(11) Nt,j =
naÿ

a=1

Nt,a,j.

The harvest process was modeled using a freely estimated annual exploitation rate (Ut) time254

series, which was assumed to apply equally to all populations (but see Section 2.2.3 for a255

relaxation of this assumption):256
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(12) Ht,j = Nt,jUt,

and escapement was obtained as:257

(13) St,j = Nt,j(1 ≠ Ut).

The quantity Ht (mixed-stock harvest) was obtained by summing Ht,j within a t index258

across the j indices. The true age composition returning in year t to population j (qt,a,j) was259

obtained as:260

(14) qt,a,j = Nt,a,j

Nt,j

.

Three data sources were used to fit the state-space model: (a) observed escapement261

from each population (Sobs,t,j) with assumed known coe�cients of variation (CV), (b) total262

harvest arising from the aggregate stock (Hobs,t) with assumed known CV, and (c) the age263

composition of populations with these data each calendar year (qobs,t,a,j; which had associated264

e�ective sample size ESSt,j equal to the number of fish successfully aged for population j in265

year t). The CVs were converted to lognormal variances:266

(15) ‡2

log

= loge(CV2 + 1),

and used in lognormal likelihoods to fit the time series St,j to Sobs,t,j and Ht to Hobs,t. Calendar267
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year age composition was fitted using independent multinomial likelihoods with parameter268

vectors qt,1:na,j and observed vectors of (qobs,t,1:na,j · ESSt,j).269

Three alternative formulations of the state-space model were evaluated, and all were270

simplifications of the full model described above regarding the structure of (a) the covariance271

matrix on recruitment residuals (�R) and (b) the maturity process (see Table 3 for a summary272

of the models fitted in this analysis). The simplest state-space model did not include brood273

year variability in maturity schedules and �R was constructed by estimating a single ‡2

R and fl274

(common across all populations and population pairs) and populating the diagonal elements275

with ‡2

R and o�-diagonal elements with fl‡2

R. This simplest model is denoted as SSM-vm (lower276

case letters indicate simple versions; v = recruitment covariance; m = maturity variability).277

In one intermediate model (SSM-vM), brood year maturation variability was included but �R278

was constructed as in the simplest model. In the other intermediate model (SSM-Vm), brood279

year variability in maturation was not included but �R was fully estimated as in the full280

model (SSM-VM). These two structural uncertainties (complexity in recruitment covariance281

and maturity variability) were chosen for evaluation here because they are two key areas282

where an analyst might question if the available data are adequate for model fitting and283

inference. In other words, these are two key model components where it may be important284

to know if the complex versions are reliably estimable with a reasonable amount of data.285

2.2 Kuskokwim empirical analysis286

2.2.1 Study system287

All six assessment models (two regression-based and four state-space models) evaluated were288

fitted to empirical data from Chinook salmon populations of the Kuskokwim River located in289

western Alaska (Figure 2). The Kuskokwim River is one of the largest subsistence salmon290

fisheries in the state, and the largest for Chinook salmon (Fall et al. 2018). Commercial291

harvests have been historically important to the region, but have not been directed toward292
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Chinook salmon since 1984. The fishery can very well be described as operating on a mixed-293

stock, both for multiple salmon species (predominately Chinook, chum O. keta, and sockeye294

salmon) and for multiple populations of the same species. Rigorous monitoring of harvest,295

escapement, and age composition for Chinook salmon began in the mid-1970s with e�orts296

expanding significantly in the early-1990s and 2000s (Figure 1). Approximately 90% of the297

subsistence salmon harvest in the drainage occurs in the main-stem Kuskokwim River using298

primarily drift gillnet gear, downstream of the confluence with the Aniak River (Hamazaki299

2011). Migrating adult fish originating from and returning to the various tributaries (of300

which there are at least 20 that support salmon; Figure 2) enter through this bulk of the301

fishery as a mixed-stock: first Chinook in early June, then chum and sockeye later in June302

and July but with substantial overlap in entry timing. Chinook salmon stocks migrating to303

the headwaters have been illustrated to enter the main-stem earliest in the summer migration304

(Smith and Liller 2017a,b) so a limited ability to direct harvest toward or away from these305

populations may exist by manipulating the front portion of the fishery. It is acknowledged306

that the assessment program does not sample all tributaries within the Kuskokwim River307

where Chinook salmon spawn (Figure 2), but total run size between 1976 and 2017 has been308

estimated via run reconstruction (Liller et al. 2018) and large-scale mark-recapture studies309

(Schaberg et al. 2012; Smith and Liller 2017a,b; Stuby 2007).310

2.2.2 Data sources311

The data set used included counts of Chinook salmon at many locations throughout the312

Kuskokwim River drainage (Figure 2). Nearly all data were collected by projects managed313

by the Alaska Department of Fish and Game (ADF&G) and a complete description of data314

needs and preparation procedures is provided in Online Supplement S1. The raw escapement315

data set spanned 20 di�erent escapement monitoring projects (six weirs and 14 aerial surveys)316

and 42 calendar years from 1976 – 2017; see Head and Smith (2018) for details on tributary317

escapement monitoring. Some pre-processing was required to convert the aerial survey318
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index counts to estimates of total escapement so that abundance-based reference points319

could be calculated. Annual estimates of Chinook salmon harvest originating from both320

subsistence and commercial fisheries in each year was also available, as were the estimated321

exploitation rates of the aggregate stock. Finally, age composition data were available for322

the six populations monitored via weir programs (complete details on data processing are323

provided in Online Supplement S1).324

2.2.3 Sensitivity Analyses325

Two analyses were conducted to test the sensitivity of inference from state-space models fitted326

to Kuskokwim data. First, the default assumption that all populations have been fished at327

the same rate each year is tenuous. We therefore included a term in the model that allowed328

for populations to have di�erential vulnerability to harvest (vj) by replacing Ut with Utvj329

in (12) and (13) which allowed acknowledgement of heterogeneous exploitation rates. This330

alteration changes the interpretation of the parameter vector Ut to be the exploitation rate331

of fully vulnerable populations. Without additional information on what portion of Hobs,t332

was attributable to each population going back in time, the vj elements are not estimable.333

In the absence of this information for Kuskokwim River Chinook salmon, vj was assigned334

by calculating the fraction of the fishing households residing along the main-stem of the335

river that each population must travel past in order to reach their natal spawning grounds.336

Fishing household data were available from post-season interviews conducted by ADF&G337

(e.g., Hamazaki 2011; Shelden et al. 2016). Although this method ignores the temporal338

overlap of the fishery (Hamazaki 2008) with the arrival timing of particular population groups339

(Smith and Liller 2017a,b), it was intended as a first step at determining how much the340

conclusions might depend on how the internal harvest accounting was specified. No attempt341

was made to alter how harvest was apportioned for use in the regression-based models.342

As a secondary sensitivity analysis, the information content of the age composition data343

was reduced. In the default case, each annual multinomial age composition vector had sample344
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size equal to the number of fish successfully aged for that population/year combination. For345

some populations/years, this number was quite high from a multinomial sampling perspective346

when the number of categories is small (e.g., ¥ 1,200 samples across four age categories).347

To assess whether this strength of information had an impact on the inference, the e�ective348

sample size was manipulated such that the maximum number of fish sampled for a population349

was assigned ESSt,j = 100, and the other years with data were scaled proportionately.350

2.2.4 Comparisons of model output351

Key population dynamics parameters and biological reference points were compared among352

the six assessment models wherever possible to determine the extent to which the management353

conclusions for Kuskokwim River Chinook salmon populations might change based on the354

model structure used. Where appropriate, quantities were averaged across populations355

to facilitate comparisons and included indicators of the average population’s productivity356

(Ū
MSY,j; the “bar” denotes average across populations) and size (S̄

eq,j and S̄
MSY,j). Reference357

points for the aggregate mixed-stock included U
MSY

and S
MSY

.358

Model fits to the data (Sobs,t,s, Hobs,t, and qobs,t,a,j) were examined for all state-space359

models and noteworthy di�erences among model structures were identified. Estimates of360

synchrony in recruitment anomalies were examined, both between two average populations361

(fl̄i,j), and among all population pairs. For the simple recruitment variance models (SSM-362

vm and SSM-vM), correlations between each population pair were conducted by applying363

Pearson’s r coe�cient to two populations’ estimated recruitment anomaly time series; in the364

complex variance models these correlations were captured in the freely estimated covariance365

matrix (�R), and they were extracted and summarized. Although the state-space models366

were ignorant of spatial relationships among the populations, visual comparisons were made367

to determine if populations closer in proximity showed higher synchrony than those spaced368

more distantly, as might be expected. The auto-correlation parameter („) and characteristics369

of the maturity schedules (fia and D) were also compared among state-space models.370
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Harvest-biodiversity trade-o�s were assessed visually using estimated equilibrium mixed-371

stock states and metrics of biodiversity. First, the equilibrium escapement and harvest were372

calculated (Schnute and Kronlund 2002) for each population at each level of an exploitation373

rate that a�ected all populations equally, then summed to obtain the mixed-stock expected374

states at each level. The fraction of populations overfished and trending towards extirpation375

(defined as the case where equilibrium Sj Æ 0) were also calculated. Some populations could376

not be fitted using the regression approach because they had fewer than three observed pairs377

of RPSy,j. When comparing quantities to the estimates from the state-space models, the378

populations that could not be fitted with regression approaches were removed from state-space379

model outputs.380

2.3 Simulation-estimation trials381

To test the performance of these models, we simulated 160 data sets designed to mimic the382

Kuskokwim River empirical data set. Each of the 160 data sets were passed to each of the six383

assessment models to evaluate which methods return estimates closest to the true parameters.384

Given that the state-space model is a much more natural model of this system (which385

has intrinsic time series properties) than the regression-based versions, it was used as the386

foundation of the operating model (i.e., state-generating model). The biological submodel387

was more complex than the most complex estimation model – namely with regards to the388

maturity schedule, which had a modest level of population variability in mean maturity389

but with highly correlated brood year variability. In order to serve as the state-generating390

model for the simulation, the state-space model needed only to be populated with true391

parameters, initial states, and a harvest control rule. A fixed exploitation rate policy was392

used (chosen to maximize yield without overfishing more than 30% of the populations) with393

a modest amount of implementation error to ensure the escapement data time series were394

generated with contrast. nj = 13 populations were simulated with di�erent parameters U
MSY,j395

and S
MSY,j which took on the values of random posterior draws from the most complex396
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state-space model fitted to the Kuskokwim River Chinook salmon population data. All other397

parameters were chosen to mimic the estimated values from the Kuskokwim analysis, with the398

exception of �R, which was set to have a modest amount of population recruitment variability399

(‡̄j,j ¥ 0.4); fli,j for each pair of populations was simulated randomly to be between -1 and 1,400

but approximately zero when averaged across all populations.401

For a given set of simulated true states, a set of observed states (Sobs,t,j, Hobs,t, qobs,t,a,j)402

was generated by adding sampling error to each year following a fifty year “burn-in” period403

of the harvest policy into the population dynamics. This was intentionally done to violate404

the assumption made by the state-space estimation model that sampling was initiated under405

unfished conditions, as shown in (5). Sampling errors in escapement and harvest estimates406

were generated with lognormal variability and multinomial sampling for the age composition,407

as assumed in the state-space estimation model. Frequency of sampling on each population was408

set to approximately mimic the Kuskokwim River historical monitoring program (Figure 1).409

The sampling frequency was designed to continue to generate random sampling schedules until410

one was found that ensured no population had fewer than three observations of RPSy,j which411

allowed the regression-based models to be fitted to all populations. Aggregate harvest data412

(Hobs,t) were assumed to be available every year as were annual estimates of the mixed-stock413

exploitation rate.414

Estimation performance in terms of accuracy among assessment models was calculated415

using the proportional error (xest≠xtrue
xtrue

). Key quantities of interest for comparison between416

the regression approaches and the state-space models included: S
MSY

, U
MSY

, –j, U
MSY,j, and417

S
MSY,j, as well as two metrics that incorporate population biodiversity considerations: Sú

p418

and Uú
p . These quantities represent the equilibrium mixed-stock escapement or exploitation419

rate, respectively, that would result in no more than p · 100% of populations expected to420

be overfished. “Overfished” is defined here as the case where a population would be fished421

at U > U
MSY,j. Three levels of p were extracted: 0.1, 0.3, and 0.5. For the state-space422

models, the ability to accurately estimate the abundance states of Ry,j, St,j , and Ht was also423
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assessed, summarized for early years and all years separately to investigate the influence of424

the assumption that the observation time series began at unfished equilibrium, as described425

by (5). Coverage of the 95% equal-tailed credible interval was assessed for these quantities by426

determining the fraction of obtained credible intervals that captured true values. Additionally,427

model run times and convergence diagnostics were summarized for all models that were428

successfully fitted to the simulated data sets.429

2.4 Computation430

All parameter estimation was conducted in the Bayesian framework using the MCMC engine431

JAGS (Plummer 2017) invoked through R (R Core Team 2018) using the package “jagsUI”432

(Kellner 2017). All priors for the regression-based methods were uniform and su�ciently433

non-informative to exclude only highly implausible values (e.g., loge(–j) ≥ U(0, 5)). Priors434

were selected with the same intent for state-space models, though other distributional forms435

were required in some cases (Table 4).436

MCMC sampling was conducted using su�ciently long chains (Table 5) to ensure437

adequate sampling of the posterior parameter space for inference and was assessed using438

visual inspection of MCMC sampling behavior and the convergence diagnostic proposed439

by Brooks and Gelman (1998). Adequate sampling was further verified for key estimated440

quantities using the e�ective sample size and the Raftery-Lewis diagnostic (Raftery and Lewis441

1992). All posterior distributions were summarized using the median and 95% equal-tailed442

credible intervals. In all cases where a quantity was derived from estimated parameters, (e.g.,443

Sú
p), the calculation was conducted for each sample from the joint posterior, then the resulting444

marginal posterior was summarized, which proved to be a straightforward approach to carry445

the uncertainty forward from the model estimates to other quantities of interest. All code446

for simulation, JAGS models, data processing, making use of High Performance Computing447

resources, and output summarization is documented in Staton (YYYY; a Github repository448

that stores code and data, will have a DOI associated with it).449
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3 Results450

3.1 Kuskokwim River empirical analysis451

3.1.1 State-space models fit to data452

The four state-space models produced generally similar latent escapement state time series,453

especially in years with observed escapement data (Figure 3). For several populations, there454

were no escapement data prior to the mid-1990s, and this is one area the various state-space455

models produced di�erent escapement estimates. In this early portion of the time series,456

models with brood year variability in maturity (SSM-vM and SSM-VM) tended to estimate457

higher escapement abundance than the models with time-constant maturity (SSM-vm and458

SSM-Vm). For example, populations spawning in the Kwethluk, George, Holokuk, and459

Takotna rivers all showed this pattern (Figure 3).460

There were several cases where extremely high (and seemingly unrealistic) escapement461

states were estimated by the state-space model, though these only occurred in models with462

simple maturation schedules (Figure 3). The period in the late-1980s and the early 1990s had463

much (i.e., 5 – 10 times) higher estimated escapement than ever observed for the Holitna,464

Pitka, and Tatlawiksuk populations under either models SSM-vm or SSM-Vm. The George465

River population had abnormally large escapements in the mid-1990s, and was again most466

exaggerated for the SSM-vm and SSM-Vm versions. All of these cases occurred when no467

escapement data were available; in years with data all state-space models fitted the escapement468

data quite well (Figure 3).469

In general, the fit to the aggregate harvest data was good, though the time-varying470

maturity schedule versions (SSM-vM and SSM-VM) fitted the data nearly perfectly. Constant471

maturity schedule models resulted in a harvest state that was greater than twice as large as472

the observed state in 1976 (the first observed year) but never showed discrepancies nearly473

this large for the rest of the time series. Additionally, the state-space models generally fitted474
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the age composition data well. The only di�erences among model structures came in the475

distinction of how maturity was treated. Complex maturity models tended to have better fit476

than simple maturity models for most populations and ages. Far more detailed model output477

and model fits from each of the state-space models can be found in the Online Supplements478

S2 – S5.479

3.1.2 Comparisons of estimated spawner-recruit dynamics480

There were large discrepancies in estimates of population productivity between the regression481

models and the state-space models. Both regression approaches suggested the maximum482

productivity of the average population (–̄j) was far higher than any of the state-space models.483

The independent regression approach provided an estimate of –̄j = 7.74 (4.47 – 20.22; 95%484

credible limits) and the mixed-e�ect regression approach suggested –̄j = 4.63 (3.16 – 7.45).485

Most state-space models suggested –̄j < 3, with the highest upper 95% credible limit being486

5.01, obtained by SSM-vM. These di�erences in estimated productivity translated directly to487

the maximum sustainable exploitation rate for the average population (Ū
MSY,j; Figure 4a)488

and even more so for the mixed-stock (U
MSY

; Figure 4b). Among state-space models, those489

that included complex maturity variability tended to suggest the populations were more490

productive (Figure 4a,b). In comparing state-space model estimates from the 10 substocks491

able to be fitted with all methods to the complete set of 13 substocks, the average maximum492

sustainable exploitation rates were quite similar, indicating the stocks with insu�cient data493

for regression were missing at random in this regard (Figure 4a,b; compare squares and494

circles).495

One metric of substock size is the spawner abundance expected to exactly replace496

itself under unfished equilibrium conditions (S
eq,j). When averaged across substocks (S̄

eq,j),497

the regression approaches suggested the Kuskokwim River substocks were approximately498

2,500 fish (~25%) smaller than the state space models. S̄
MSY,j followed a similar pattern:499

smaller values for the regression approaches than the state-space models (Figure 4c). In500
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terms of the mixed-stock escapement expected to produce maximum sustained yield (S
MSY

),501

regression approaches suggested much smaller escapements were necessary than did state-502

space models; by a margin of 12,000 – 15,000 fish (~25 – 50%; Figure 4d). State-space models503

with time-constant maturity had much greater uncertainty in S̄
MSY,j and S

MSY

than the504

complex maturity models (Figure 4c,d). In comparing state-space model estimates from505

the 10 substocks able to be fitted with all methods to the complete set of 13 substocks, the506

average substock-specific escapement values were quite similar, indicating the stocks with507

insu�cient data for regression were missing at random in this regard (Figure 4c; compare508

squares and circles). However, the mixed-stock S
MSY

estimates were quite di�erent between509

the 10 and 13 substock outputs (Figure 4d; compare squares and circles). It seems the three510

additional substocks (Holitna, Kisaralik, and Oskawalik) should make up approximately 25%511

of the escapement among the substocks included in this analysis if the management objective512

is to maximize long-term yield.513

These similaries and di�erences in population size and productivity between approaches514

are well-illustrated at the population-level by visualizing the expected recruitment at each515

spawner abundance suggested by each model (Figure 5). It is evident that the four state-space516

models behaved similarly near the origin (which is governed by –j), whereas in many cases517

the regression models suggested steeper slopes near the origin (corresponding to higher518

values of –j). State-space models tended to disagree in expected recruitment more at larger519

spawner abundances (Figure 5), suggesting that inferences about stock size and the strength520

of compensation are dependent on the details of how recruitment variance and maturity521

are modeled for some substocks. The mixed-e�ect regression approach di�ered from the522

independent regression estimates the most for substocks with fewer observations due to523

shrinkage (e.g., Pitka versus Kogrukluk; Figure 5).524

In terms of recruitment variability, the regression-based approaches suggested that the525

average standard deviation of the lognormal distribution that describes randomness in the526

recruitment process (‡̄R,j) was 0.78 and 0.52 for the independent and mixed-e�ects versions,527
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respectively (Figure 4e). The state-space models estimated that the average amount of528

recruitment process variability by substock was higher: point estimates ranged from 0.85 –529

1.11 (Figure 4e). The models with time-varying maturity had estimates on the lower end530

of this range, which could be explained by the inclusion of additional process variability in531

maturity that could describe variability in the data.532

Unlike the regression models, the state-space models estimated the degree of covariance533

between substock recruitment residuals. All state-space models estimated a moderate amount534

of correlation in recruitment variance (i.e., synchrony) between two average substocks (fl̄i,j):535

point estimates ranged between 0.18 and 0.28, and none of the models suggested 95% credible536

limits that encompassed zero. The simple variance models (SSM-vm and SSM-vM) estimated537

a single correlation parameter, whereas the complex versions (SSM-Vm and SSM-VM)538

estimated a unique value for each substock combination. One might expect that substock539

pairs belonging in the same region to show higher degrees of synchrony than substock pairs540

in di�erent regions, though this analysis suggested this was not necessarily the case (the541

state-space models did not take into account spatial relations among substocks). Large542

correlations (e.g., >0.5) were found between pairs of lower versus upper river substocks, lower543

versus lower, and upper versus upper substocks (Figure 6). Relatively few large correlations544

were found among middle river substocks with other substocks, though both SSM-Vm and545

SSM-VM suggested that the Holokuk and Oskawalik substocks have highly synchronous546

recruitment dynamics, which is interesting given their close proximity (Figure 2; substocks #5547

and #6, respectively). Conversely, all models suggested the Holitna and Kogrukluk substocks548

have little synchrony, and they fall within the same subdrainage (Figure 2; substocks #7549

and #8, respectively). Most correlations were positive, especially those that were large550

in magnitude (Figure 6). A notable exception was the correlation between the Kisaralik551

substock and the Holokuk and Oskawalik substocks: their dynamics were suggested to be552

largely opposite.553
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3.1.3 Trade-o� comparisons554

With increasing mixed-stock exploitation rates, the equilibrium mixed-stock escapement555

declined, but did so more rapidly for the state-space models than the regression models (Figure556

7). State-space models that included time-varying maturity suggested higher equilibrium557

escapement and harvest would be available at most exploitation rates than models with558

time-constant maturity. Regression models suggested that MSY was much larger and occurred559

at a higher exploitation rate than for the state-space models, as would be expected based on560

comparing the estimated biological reference points between these methods (Figure 4). In561

terms of substock diversity, the time-varying maturity models suggested fewer substocks would562

be overfished or trending towards extirpation at low exploitation rates than the time-constant563

maturity models, and the regression approaches suggested even more biologically optimistic564

conclusions (Figure 7).565

3.1.4 Sensitivity analyses566

The alternative vulnerability schedule (vj) based on the spatial distribution of fishing house-567

holds resulted in lower river substocks (those spawning in the Kwethluk, Kisaralik, and568

Tuluksak rivers) having the lowest vj ranging between 0.7 – 0.8, the middle river substocks569

ranging between 0.9 and 0.95, and those in the upper river between 0.95 and 1. When these570

vj terms were incorporated in the state-space models, most changes in substock specific571

U
MSY,j and S

eq,j were small (±10%, range: -20% – 30%), and most (eight of 13) substocks572

showed increases in U
MSY,j. Changes in U

MSY,j occurred randomly with respect to changes573

in vulnerability: some substocks in the three regions showed both increases and decreases.574

Changes with respect to substock size (S
eq,j) showed more of a pattern: lower river substocks575

(i.e., those that became less vulnerable in this sensitivity analysis) tended to become smaller576

by 5 – 15%, whereas upper river substocks showed increases of 5 – 25%. Middle river substocks577

showed a mix of increases and decreases in S
eq,j. Despite these changes in substock-specific578
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estimates, derived biological reference points for the aggregate mixed-stock showed a high579

degree of similarity: escapement-related quantities were ~3,000 fish smaller (<5% change) and580

harvest-related quantities were ~3,000 fish (~10-15%) larger for the alternative vulnerability581

assumption. Additionally, the conclusions about substock diversity at MSY were nearly582

identical: approximately 60% of substocks would be overfished and 23% would be trending583

towards extirpation.584

The alternative age composition weighting resulted in more substantial di�erences from585

the default case. Twelve of the 13 substocks showed increases in U
MSY,j, with two substocks586

showing increases of approximately 100%. Most substock-specific S
eq,j were estimated to be587

smaller when the alternative scheme was used, with eight of 13 substocks showing decreases588

between 10 and 35%. Derived biological reference points for the aggregate mixed-stock589

substantially di�ered as well: escapement-related quantities were ~6,000 – 10,000 fish smaller590

(~10-15% change) and harvest-related quantities were ~6,000 – 12,000 fish larger (~35%591

change) for the alternative age composition weighting scheme, however the conclusions about592

substock biodiversity at MSY were nearly identical, just as for the alternative vulnerability593

analysis.594

3.2 Simulation-estimation trials595

State-space models took between 1.3 and 2.9 days to fit on average (range: 0.8 – 5.1 days),596

with longer run times associated with more complex models; regression-based models took597

less than an hour in all cases. The state-space models fitted successfully to the majority of598

simulated data sets (136 out of 160) and the regression-based models were fitted successfully599

in all cases. No attempts were made to try di�erent initial values for the relatively few600

data sets that failed in fitting for the state-space models. MCMC diagnostics suggested601

that sampling was adequate in the vast majority of cases: >99% of all data sets met the602

convergence criterion for all parameters in all models and >95% met the criterion for adequate603

number of samples.604
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Regression models were found to systematically overestimate the population-specific605

quantities of –j and U
MSY,j and in some cases they produced wildly erroneous estimates. The606

mixed-e�ect model was more accurate than the models that fitted independent regressions to607

each population (Figure 8). State-space models far more accurately and precisely estimated608

these productivity-based quantities than the regression-approaches, though there was still609

a slight positive bias (median proportional error ~5%; Figure 8). Additionally, regression610

approaches tended to underestimate S
MSY,j more than the state-space models. All state-space611

models tended to overestimate ‡R,j by approximately 5% regardless of the assumed covariance612

structure, though the degree of serial auto-correlation („) was accurately estimated. The613

individual state-space models showed essentially no di�erences in bias for ‡R,j or „ (Figure614

8). However, models with simple covariance structure tended to overestimate the correlation615

among populations and vice versa for the complex covariance structure.616

All state-space models returned unbiased estimates of abundance-related states (Ry,j,617

St,j, and Ht) when including all years. The early portion of the time series had a slight618

tendency to be overestimated by all models (primarily for Ry,j) by approximately 5%. This619

was likely a result of the assumption that data collection began when the populations were620

unfished.621

Just as for the population-specific quantities, the regression-based methods provided622

generally poorer estimates of mixed-stock biological reference points than state-space models623

and there was no loss in performance with state-space model complexity (Figure 9). The624

mixed-e�ect regression produced more positively biased estimates of Uú
0.1 and Uú

0.3 than625

the independent regression model approach, but this pattern switched for Uú
0.5 and U

MSY

,626

likely as a result of the estimated shape of the distribution of population productivity. The627

mixed-e�ect version was less dispersed, meaning that productivities in the lower tail would628

have been closer to the mean (i.e., larger) than for the independent regression approach.629

State-space models tended to produce slight underestimates of Uú
0.1 and Uú

0.3 and slight over630

estimates of Uú
0.5 and U

MSY

(Figure 9).631
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Credible interval coverage was better for the state-space models than for regression632

approaches as well. For population-specific parameters, the regression approaches had lower633

coverage than the state-space models and the models that had the complex recruitment634

variance structure had more parameters close to the optimal level of 95% (Table 6). All635

state-space models had low coverage for fi which resulted from highly narrow credible intervals,636

not from inaccurate estimates, though complex maturity models did have slightly better637

coverage (16% versus 11%; Table 6). In terms of mixed-stock biological reference points, the638

state-space model provided much better coverage than the regression approaches, particularly639

for exploitation rate-based points (Table 6). All state-space models exhibited poor coverage640

for abundance-related states (49 – 66%; Table 6).641

4 Discussion642

We presented a novel extension of the age-structured state-space spawner-recruit analytical643

framework, which has increasingly been applied to single stocks (e.g., Su and Peterman 2012;644

Hamazaki et al. 2012; Fleischman et al. 2013; Staton et al. 2017; DeFilippo et al. 2018),645

to the mixed-stock realm. THis state-space model was shown to (1) have much less bias646

and better coverage in key management quantities than regression-based approaches, (2) be647

robust to structural uncertainty in assumed recruitment covariance and maturity variability,648

(3) provide good fits to the data, and (4) make more full use of the available data for policy649

and ecological conclusions. Though it was developed and simulation-tested in the context of650

Kuskokwim River Chinook salmon, we expect that the mixed-stock state-space framework651

presented here is general enough to be applied to other systems with similar (and possibly652

dissimilar) properties and data availability.653

The simulation-trials illustrated that the state-space model performed superiorly to654

both evaluated regression-based approaches, regardless of the assumptions made regarding655

recruitment covariance structure and variability in maturity. Furthermore, the directionality656
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of the regression biases were consistent with expectations from time-series bias (Walters657

1985): positive biases in U
MSY,j and downward biases in S

MSY,j, as well as for the respective658

aggregate mixed-stock quantities (U
MSY,j and S

MSY,j. These biases all but disappeared in659

comparison for the state-space models for U
MSY,j and to a lesser degree for S

MSY,j. These660

results speak strongly in favor of the use of the state-space model over the regression-based661

approaches assessed here. The superior performance of state-space models was likely a result662

of its ability to (1) explicitly account for the time-series properties in the data, (2) parse663

observation from process uncertainty, and (3) make more full use of the available data.664

With respect to the fuller use of the available data, there were 35 brood years for665

each population in which it was possible to jointly observe spawners and recruits across666

all four ages (if all calendar years between 1976 and 2017 were monitored). The average667

Kuskokwim River population fitted using the regression approaches had 17% of the possible668

observations because partially observed recruitment events were not considered. Conversely,669

the average population fitted using the state-space model had 31% of possibly observable670

pairs where the recruitment was observed for three out of four ages, 39% with two ages out671

of four, and 42% for one age out of the possible four observed. Ignoring whether recruitment672

and escapement were observed jointly, the average population fitted using the state-space673

model had 48%, 65%, and 76% of possibly observable recruitment events observed for the674

same ages combinations, respectively. Clearly, the use of the regression approaches resulted675

in a severe loss of information. It could be argued that the rule we employed to only use676

completely observed recruitment pairs for fitting the regression approaches was too strict and677

that alternative approaches to impute missing observations could be devised. While this may678

be true, the state-space model provides a comprehensive, rational, and rigorous method to679

completely reconstruct the brood tables with latent states informed with partial information680

by fitting to solely observed data.681

Although the simulation results suggested the state-space model is an unbiased estimator,682

to reduce the dimensionality of our analyese it was assessed under relatively limited conditions.683
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Su and Peterman (2012) illustrated that state-space models can still show bias under some684

combinations of measurement error, intrinsic productivity, and fishing intensity. We attempted685

to evaluate performance across a range of true parameters by randomly sampling leading686

parameters from the joint posterior from one of the empirical model fits. Though it is possible687

the model could perform more poorly if (1) population size and productivity were more688

or less heterogeneous than assumed, (2) fewer populations were used, (3) available data689

time series were much shorter or sparser, or (4) the magnitude of observation error was690

incorrectly assumed. All of these scenarios remain exciting avenues for future research, but691

were beyond the scope of this study. As it currently stands, our analysis suggests that it692

is reasonable to conclude that the state-space model developed here can be an appropriate693

estimator for mixed-stock fishery data, though future applications to specific cases should be694

simulation-tested if the properties of the system and available data di�er significantly from695

the Kuskokwim and the operating model and simulated sampling scheme designed roughly696

o� of it.697

The policy and trade-o� conclusions from the state-space model were generally robust698

to an alternative assumption regarding relative vulnerability of the populations to harvest,699

although population-specific estimates did change moderately (primarily U
MSY,j). The700

alternative vulnerability vector used was a first attempt at assessing sensitivity to the701

assumption that all populations have been equally vulnerable to harvest; other more complex702

approaches to determining this vector could also be assessed in the future. For example, the703

fishery has historically been focused in on the early portion of the Chinook salmon run in704

the Kuskokwim River (Hamazaki 2008), and upper river populations have been illustrated705

to arrive earliest in the summer migration (Smith and Liller 2017a,b). This indicates that706

upper river populations may be even more vulnerable than what was captured by the vector707

I used, which was based solely on the spatial distribution of harvesters. Although no data708

sources were available to directly estimate the vulnerability vector for the Kuskokwim River709

data, other systems may have these data that could be incorporated, particularly those with710
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precise genetic stock identification programs. One would expect larger discrepancies in policy711

conclusions to arise when vulnerability covaries more strongly with either population size or712

population productivity; coupled with methods to incorporate information on population-713

specific harvest data, this provides an provides an interesting avenue for future research.714

The conclusions from the state-space models were less robust to alterations in the715

assumed weighting of age composition data. Specifically, policy recommendations became716

more aggressive when age composition data received less weight: higher estimates of U
MSY

717

and lower S
MSY

. It is unsurprising that the estimates changed, as this often happens in718

stock assessment models when the assumed data weighting structure is altered (Hulson et al.719

2011), but it is unclear as to why weakening the confidence in the age data had the e�ect of720

increasing perceived population productivity. Regardless of the cause, this finding suggests721

that policy conclusions may be conditional on the weighting of the data, and that careful722

thought should be given to the appropriate weighting scheme. It is likely that the optimal723

weighting scheme falls somewhere between the two schemes assessed here, given that e�ective724

sample size is nearly always less than the true sample size due to violations to the multinomial725

sampling distribution (e.g., sampled individuals show similarities that result in clustering,726

non-independence, and overdispersion; Maunder 2011).727

Regarding state-space model complexity, the important findings were (1) there was728

no loss in estimation performance with increasing model complexity, (2) credible interval729

coverage of the complex recruitment covariance models was better than that of the models730

with simple structures for population-level parameters of interest, and (3) the time-varying731

maturity models never resulted in wildly large estimates of escapement or harvest as the732

time-constant maturity models sometimes did for the Kuskokwim data. Based on these733

findings, it seems that the most complex model is most appropriate, however, as previously734

stated, the simulation-trials were limited in the scope of biological and sampling scenarios735

considered, and as such the appropriate model may change if applied to other systems with736

di�ering characteristics.737
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The conclusion that the most complex model is most appropriate is contrary to the738

traditional dogma of assessment model complexity and management performance. Walters739

and Martell (2004) advise that more complex models may provide more accurate estimates of740

management quantities, but that their uncertainty will be much greater rendering them less741

useful for setting harvest policies (see Figure 5.2 and the corresponding discussion therein).742

These claims have been supported through closed-loop evaluations that have shown simple743

models known to be wrong but that give conservative advice can provide better management744

outcomes than complex models that better approximate the true model (e.g., Hilborn 1979;745

Ludwig and Walters 1985). The simplest model (fewest freely estimated parameters) evaluated746

here was the mixed-e�ect regression approach. Although it did provide more conservative747

and more confident advice than the independent regression approach, the simulation-trials748

showed that it was biased with respect to U
MSY

and S
MSY

in the direction that would lead to749

more aggressive than optimal harvest policies relative to the state-space models.750

In some cases, harvest on strong and highly profitable fisheries has been severely751

curtailed in the name of conserving a few small and unproductive populations. Walters et al.752

(2018) discuss an example of British Columbia commercial salmon fisheries, were large declines753

in harvest beginning in the early-1990s and continuing to the present were (in part) a result754

of intentional reductions in exploitation rates intended to minimize the risk of extinction of755

a few small and unproductive stocks. The authors argue that fisheries managers have not756

adequately considered the harvest-biodiversity trade-o� in their decision-making processes,757

and have instead focused on managing for the weakest stocks in the portfolio. Among the758

authors’ four (mostly controversial) recommendations to address this situation, first on their759

list is for managers to conduct trade-o� analyses so that costs and benefits to both fishery and760

conservation interests can more fully inform decision-making. Our state-space approach shows761

promise for informing these policy analyses. Particularly for those that involve closed-loop762

stochastic simulation (e.g., Catalano and Jones 2014), the state-space model provides rich763

biological estimates to populate the operating models and understand the strength of the764
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portfolio e�ect (which is inversely related to the magnitude of shared recruitment trends;765

Schindler et al. 2010, 2015). The model not only provides estimates of leading parameters (–j766

and —j), but also estimates of the extent to which recruitment anomalies are shared among767

populations and the strength of serial auto-correlation in these time series, all of which would768

be valuable in populating operating models for policy evaluation. Furthermore, it is possible769

to use the estimated states of recruitment and spawner abundance and recruitment anomalies770

at the end of the time series to populate forward simulations from the present to determine771

which policies might be most likely to achieve short-term objectives in addition to those more772

focused on the long-term (Connors et al. nd).773
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Table 1. Description of the various index notation used in the description of state-space
models. nt is the number of years observed for the most data-rich stock.

Index Meaning Dimensions

y Brood year index; year in which fish were spawned ny = nt + na ≠ 1
t Calendar year index; year in which observations are made nt

j Population index nj

a Age index; a = 1 is the first age; a = na is the last age na
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Table 2. Symbology used in the presentation of the state-space models.

Symbol Description

Dimensional Constants

ny Number of brood years
nt Number of calendar years for the population with the longest data time series
nj Number of populations
na Number of possible ages of maturation
amin The first age recruits can mature
amax The last age recruits can mature

Parameters

–j
a Maximum recruits per spawner for population j

—j
a Capacity parameter for population j; inverse of S

MAX,j

‡2

R,j Recruitment white noise process variance for population j
fli,j Correlation in process variance between subtocks i and j
�R Recruitment white noise process covariance matrix
„ Lag-1 serial autocorrelation coe�cient
Êy,j Serially autocorrelated portion of recruitment process anomalies (residuals)
fia Mean probability a juvenile matures at age a
Db Dirichlet dispersion parameter for brood year-specific maturity schedules
py,a

b Probability a juvenile belonging to brood year y matures at age a
Ut

c Exploitation rate experienced by fully vulnerable populations in calendar year t
vj

c Relative vulnerability term for population j

Biological Reference Points

U
MSY,j Exploitation rate expected to produce MSY for population j

U
MSY

Exploitation rate expected to produce MSY for the mixed-stock aggregate
S

MSY,j Spawner abundance expected to produce MSY for population j
S

MSY

Spawner abundance expected to produce MSY for the mixed-stock aggregate
S

MAX,j Spawner abundance expected to produce maximum recruitment for population
j

S
eq,j Spawner abundance expected to produce the same number of recruits for

population j
Sú

p
d Mixed-stock escapement expected to result in no greater than p · 100% of

populations overfished
Hú

p
d Same as Sú

p , but for mixed-stock harvest
Uú

p
d Same as Sú

p , but for mixed-stock exploitation rate
pOF,MSY

d Fraction of populations expected to be overfished at MSY
pEX,MSY

e Fraction of populations expected to be trending towards extinction at MSY
States

Ṙy,j Deterministic (expected) recruitment in brood year y for population j
Ry,j Realized latent (true) recruitment in brood year y for population j
Nt,j Run abundance returning to spawn in calendar year t for population j
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Table 2. Symbology used in the presentation of the state-space models. (continued)

Symbol Description

St,j Spawner abundance in calendar year t for population j
Ht Mixed-stock aggregate harvest in calendar year t
qt,a,j Fraction of the run mature at age a in year t for population j

a In the state-space models, U
MSY,j and S

MSY,j were estimated as leading parameters, –j and
—j were derived from them using equations found in Schnute and Kronlund (2002).

b Used only in complex maturity models: SSM-vM and SSM-VM. For simple maturity models,
py,a took the value fia.

c In the default case, all populations were assumed to be fully vulnerable, vj was used in a
sensitivity analysis to this assumption.

d Overfished is defined here as the case where the mixed-stock or any given population is
fished with exploitation rate greater than is expected to produce MSY.

e Trending towards extirpation is defined here as the case where expected equilibrium escape-
ment is less than or equal to zero.
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Table 3. Summary of evaluated models in this analysis. Regression models are described in
Section 2.1.1 and state-space models are described in Section 2.1.2.

Model nj Unique ‡j AR(1) Recruitment Covariance Time-Varying

Maturity

Regression-Based Models

LM 10 Yes No None Yes
LME 10 No No None Yes

State-Space Models

vm 13 No Yes Single fl bounded by [-0.05 – 1) No
Vm 13 Yes Yes Unique fli,j No
vM 13 No Yes Same as vm Yes
VM 13 Yes Yes Same as Vm Yes
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Table 4. Prior distributions used for all parameters in the state-space models for both
empirical and simulation analyses. In all cases, priors were selected to be minimally informative
while also preventing the sampler from exploring highly unlikely areas of the parameter space.
Di�erences among versions of the state-space model (e.g., SSM-vm and SSM-Vm; Table 3)
are described by footnotes.

Parameter Prior Description

U
MSY,j Uniform(0.01, 0.99) Exploitation rate that produces MSY

S
MSY,j Lognormal(0, 0.001) Spawner abundance that produces MSY

„ Uniform(-0.99, 0.99) Lag-1 auto-correlation coe�cient
�≠1

R
a Wishart(R, nj + 1) Inverse covariance matrix for white-noise

recruitment process variability
‡R

b Uniform(0, 2) White-noise recruitment process standard
deviation

flb Uniform(-0.05, 1) Correlation in recruitment process variability
among populations

fi Dirichlet(– = [1, 1, 1, 1]) Average probability of maturing at each age
D≠0.5c Uniform(0.03, 1) Dispersion of brood year-specific maturity

schedules
py

c Dirichlet(– = fi · D) Brood year-specific probability of maturing at
each age

Ut Beta(1,1) Annual exploitation rate of fully vulnerable
populations

a Only for SSM-Vm and SSM-VM
b Only for SSM-vm and SSM-vM, �R was constructed using ‡R and fl as described at

the end of Section 2.1.2.
c Only for SSM-vM and SSM-VM, all py took on fi for SSM-vm and SSM-Vm.
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Table 5. Dimensions for the Markov Chain Monte Carlo algorithms used in this analysis.
State-space models were sampled much more intensively than the regression models. Fewer
chains were used for the simulation analysis to maximize High Performance Computing
e�ciency. Oversampling of models fitted to empirical data was intentional to ensure adequate
inference.

Regression Models State-Space Models

Empirical Simulation Empirical Simulation

Burn-in 20,000 20,000 50,000 50,000
Post Burn-in 200,000 200,000 800,000 600,000
Thin Interval 50 50 400 100
Chains 10 5 10 5
Total 2,200,000 1,100,000 8,500,000 3,250,000

Retained 40,000 20,000 20,000 30,000
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Table 6. Posterior coverage for key quantities in the simulation-estimation trials. Coverage
was calculated as the percentage of all estimated 95% credible intervals across simulated
data sets that contained the true value. Bold numbers are those that fall greater than 5
percentage points from the optimal coverage.

Regression State-space

Quantity LM LME vm Vm vM VM

Parameters

–j 84 68 95 94 95 95
—j 83 73 90 88 90 89

U
MSY,j 84 68 95 94 95 95

S
MSY,j 85 76 85 84 85 85

‡R,j — — 44 93 45 95
„ — — 87 97 88 97
fi — — 12 11 16 16

fl̄i,j — — 86 93 88 93
Mixed-stock reference points

Sú
0.1 99 94 93 92 93 93

Sú
0.3 99 94 96 96 96 96

Sú
0.5 94 91 91 90 91 90

S
MSY

100 88 94 90 94 91
Uú

0.1 79 38 96 97 96 96
Uú

0.3 66 32 99 99 99 99
Uú

0.5 21 38 95 95 96 96
U

MSY

75 80 95 91 95 93
Abundance states

Ut — — 64 64 66 66

Ry,j — — 59 58 60 59

St,j — — 50 49 51 51

Ht — — 51 51 55 55
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Figure 1. The frequency of escapement sampling for each Chinook salmon population
monitored in the Kuskokwim River. Black points indicate years that were sampled for
populations monitored with a weir and grey points indicate years sampled for populations
monitored with aerial surveys. The vertical black line shows a break where > 50% of the
years were monitored for a population
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Figure 3. Observed and fitted escapement time series for each Kuskokwim River population.
Line/symbol types denote the particular state-space model and grey squares denote observed
weir counts or expanded aerial survey indices.
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Figure 4. Estimates of biological reference points serving as indicators of productivity
(Ū

MSY,j – exploitation rate producing MSY from the average population; U
MSY

– exploitation
rate producing mixed-stock MSY) and size (S̄

MSY,j and S
MSY

– same symbology but for
escapement), as well as the variability of recruitment anomalies for the average population
(‡̄R). Six models are shown: two regression models (LM and LME – triangles) and four
state-space models (vm, Vm, vM, and VM – circles/squares; models summarized in Table 3).
For state-space models, circles represent the values calculated with only the 10 populations
able to be fitted with regression approaches included; squares represent the values calculated
with all 13 populations.
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Figure 5. Fitted spawner-recruit relationships for the 13 populations monitored in the
Kuskokwim River subdrainage included in this analysis. Line and point types denote to
di�erent models; crosses are completely observed spawner-recruit pairs. Note that the
regression approaches (grey lines/triangles) fitted only to these data, the state-space models
(black lines/circles) fitted to all observations of population-specific escapement, aggregate
harvest, and age composition.
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Figure 6. Correlation coe�cients for recruitment residuals for each pair of populations.
The size of each circle represents the magnitude of the correlation, the shade represents
significance (whether 95% credible interval included 0), and the fill represents directionality
as described in the legend. Populations are ordered from downriver to upriver on both axes,
and vertical/horizontal lines denote the boundaries between what are generally considered to
be lower, middle, and upper river populations.
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Figure 7. Harvest-biodiversity trade-o�s based on equilibrium states (escapement and
harvest) of the mixed-stock and the percentage of populations expected to be in an undesirable
state as a function of the exploitation rate under the assumption that all populations are
fished at the same rate. “Overfished” is defined here as U > U

MSY,j. “T.T.” stands for
“trending toward”, and represents the case where equilibrium escapement would be Æ 0.
To facilitate comparisons with the regression approaches (grey lines/triangles), the three
populations with insu�cient data for fitting regression models were excluded from summaries
of the state-space models (black lines/circles).
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Figure 8. Proportional error for key parameters in the multi-stock spawner-recruit models
from the simulation-estimation trials. Point estimates used were posterior medians.
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Figure 9. Proportional error for key biological reference points of the aggregate mixed stock.
Sú

p and Uú
p are the aggregate escapement and fully vulnerable exploitation rate that would

ensure no more than p · 100% of populations are overfished, respectively. Point estimates
used were posterior medians.
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Abstract  13 

Variability among fish populations in ecological characteristics and productive capacity (i.e., population 14 

diversity) can be critical to maintaining resilience to environmental change and to dampening variability 15 

in harvest for fisheries that depend upon them. However, when fisheries for multiple populations overlap 16 

in space and time there can be an inherent conflict between harvest and population diversity: high harvest 17 

rates, which can be sustained by the most productive populations, can come at the cost of increased risk 18 

of overfishing those that are less productive. While the importance of these harvest-population diversity 19 

trade-offs in salmon management is well-recognized, they are not often explicitly evaluated in 20 

contemporary fisheries management. We used recently obtained estimates of Chinook salmon population 21 

diversity within the Kuskokwim River basin of western Alaska, which supports one of the largest 22 

subsistence salmon fisheries in the world, to parameterize closed-loop simulations that evaluated how 23 

well alternative harvest policies meet population diversity and fishery objectives. We found clear evidence 24 

of Chinook population diversity that gives rise to asymmetric trade-offs among fishery and conservation 25 

objectives. For example, relative to policies that sought to maximize mixed-stock harvest, policies that 26 

sought to minimize the risk of driving weak stocks to extirpation did so at the cost of a 20% reduction in 27 

harvests and 16% reduction in inter-annual stability in harvests, but with the benefit of increasing the 28 

chances of ensuring equitable access to Chinook (i.e., meeting tributary goals) by 84% and nearly 29 

eliminating the risk of weak stock extirpation. We also found that harvest policies focused on meeting 30 

minimum subsistence needs were unlikely to jeopardize long-term prospects for basin-wide sustainable 31 

use. The fishery and biological performance of alternative harvest policies, and the magnitude of resulting 32 

trade-offs, were moderately sensitive to potential future changes in population productivity and capacity 33 

and to uncertainty in the underlying drivers of recruitment variation. Our approach provides a general 34 

framework for characterizing salmon population diversity in large river basins and evaluating harvest-35 

population diversity trade-offs among alternative harvest policies within them.  36 
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Introduction 37 

Maintaining variation in life history characteristics among species, populations and individuals is 38 

increasingly recognized as a hallmark of sustainable and resilient fisheries management. In addition to the 39 

inherent importance of protecting such diversity, fisheries that integrate across species and population 40 

diversity are often more stable (Sethi 2010; Schindler et al. 2015; Anderson et al. 2017), provide increased 41 

food security (Nesbitt and Moore 2016) and are more resilient to environmental change (Anderson et al. 42 

2015; Cline et al. 2017). Considerable progress has been made uncovering and quantifying the benefits of 43 

species and population diversity, and recognition of the importance of protecting population diversity is 44 

now common in national and regional fisheries management policies such as Canada’s Wild Salmon Policy 45 

(DFO 2005) and Alaska's Sustainable Salmon Policy. However, the tactical incorporation of these 46 

considerations into contemporary fisheries management has lagged behind (Walters et al. 2018).  47 

Pacific salmon Oncorhynchus spp. provide a classic example of the many dimensions and benefits of 48 

species and population diversity. Pacific salmon are broadly distributed across the North Pacific, exhibit a 49 

diversity of ecological characteristics and life histories, spawn in thousands of locations across their range 50 

and  are uniquely adapted to the environmental conditions they experience at fine spatial and temporal 51 

scales (Quinn 2018a). This diversity helps to stabilize the aggregate benefits derived from salmon by 52 

humans (e.g., Nesbitt & Moore, 2016; Schindler et al., 2010) and wildlife (Schindler et al. 2013; Deacy et 53 

al. 2019; Service et al. 2019). For example, sockeye salmon fisheries in Bristol Bay, which integrate across 54 

hundreds of discrete spawning populations, are two times more stable than if the system consisted of a 55 

single homogenous population (Schindler et al. 2010). 56 

In situations where fisheries for individual populations within a biodiverse system overlap in space and 57 

time, there can be a conflict between harvest and the protection of population diversity because 58 

unproductive populations will be unable to sustainably withstand the harvest rates that maximize long-59 

term yield from productive stocks. This gives rise to a trade-off between harvests and the protection of 60 
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diversity, known as the “weak” stock problem in fisheries management (Hilborn and Walters 1992; Hilborn 61 

et al. 2015; Link 2017). Harvest-diversity trade-offs can be acute in large river basins with low levels of 62 

management precision and control, where fisheries for multiple species and stocks in the marine 63 

environment or lower river overlap both spatially and temporally (Pestes et al. 2008; Walters et al. 2008).  64 

Harvest-diversity trade-offs may be exacerbated by a changing climate. Climate variation, filtered through 65 

spatially variable and nonlinear ecological processes, can give rise to changes in salmon abundance and 66 

productivity over inter-decadal and centennial scales (Rogers et al. 2013; Malick et al. 2017). These 67 

changes are unlikely to be synchronous across populations and so populations that are relatively 68 

unproductive and contribute little to fisheries today may become more productive and important 69 

contributors to the fisheries of the future (Hilborn et al. 2003; Anderson et al. 2015). It follows that if these 70 

weak stocks are traded off for higher harvests today, then their ability to make a greater contribution to 71 

harvest in the future may be compromised. 72 

Harvest-diversity trade-offs may also be influenced by non-stationarity in population productivity which 73 

may also obscure the drivers of variation in recruitment in salmon systems. Many salmon spawner-74 

recruitment relationships are assumed to exhibit over-compensation with declining total recruitment at 75 

high spawner abundances (i.e., a Ricker-type spawner-recruitment relationship)(Peterman and Dorner 76 

2012; Fleischman et al. 2013; Dorner et al. 2017). Such over-compensation may occur because, for 77 

example, at high spawner densities spawning success is reduced due to competition on the spawning 78 

grounds. However, cyclical variation in environmental forcing can also give rise to the appearance of 79 

overcompensation in spawner-recruit data sets (Parma and Deriso 1990). Such cyclical environmental 80 

forcing may also exacerbate harvest-diversity trade-offs because weak stocks are more susceptible to 81 

overharvest in years of low productivity than they would be if the primary drivers of recruitment variation 82 

were intrinsic. These alternative hypotheses, which are not easily distinguished from each other based on 83 
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typical spawner-recruit data sets, give rise to structural uncertainty which may impact the evaluation of 84 

management strategies and perceptions of their ability to meet both harvest and diversity objectives. 85 

Despite the increasing recognition of the importance of salmon biodiversity, there are few published 86 

examinations of  the performance of alternative harvest policies designed to meet a range of fishery and 87 

conservation objectives that incorporate harvest-diversity considerations (but see Hawkshaw & Walters, 88 

2015; Walters et al., 2008). Additionally, quantitative evaluations of the performance of alternative 89 

harvest policies in the face of large uncertainty in the drivers, magnitudes and trajectories of recruitment 90 

dynamics, have been limited to date (but see Collie, Peterman, & Zuehlke, 2012).  91 

These knowledge gaps were recently highlighted by an Arctic-Yukon-Kuskokwim Sustainable Salmon 92 

Initiative independent expert panel that identified the need for empirically grounded closed-loop 93 

simulation studies that quantify (1) the predicted consequences of alternative harvest policies in large 94 

river basins for both sustainable production over the long-term as well as preserving biocomplexity, and 95 

(2) trade-offs among fishery and biological objectives in an attempt to understand the consequences of 96 

regime shifts and weak mechanistic understanding of drivers of recruitment (Schindler et al. 2019).  97 

To help close this knowledge gap we characterized salmon population diversity and trade-offs with mixed-98 

stock harvest in Kuskokwim River Chinook salmon (O. tshawytscha), which support one of the largest 99 

subsistence salmon fisheries in the world. We then developed and empirically parameterized a multi-100 

stock closed-loop simulation model of the system to evaluate the ability of alternative harvest policies to 101 

meet both fishery and conservation objectives. We do this across a range of alternative hypotheses about 102 

drivers of recruitment dynamics and non-stationarity in population diversity to quantify how robust 103 

alternative harvest policies, and how sensitive harvest-diversity trade-offs, are to a variable environment. 104 

We find that the inherent Chinook population diversity present in the system gives rise to an asymmetric 105 

trade-off between harvest and conserving diversity and that the fishery and biological performance of 106 
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harvest policies, and the magnitude of resulting trade-offs, are sensitive to directional changes in 107 

population diversity and uncertainty in the underlying drivers of recruitment variation. Our work provides 108 

a general framework for characterizing salmon population diversity and evaluating the ability of 109 

alternative harvest policies to meet multiple biological and fishery objectives in large salmon-producing 110 

river systems.  111 

Methods 112 

Our approach consisted of four steps: (1) establish fishery and population diversity objectives as well as 113 

alternative harvest policies through workshops with regional stakeholders, subsistence users and 114 

management agencies (US Fish and Wildlife Service and Alaska Department of Fish and Game); (2) 115 

characterize population diversity by fitting an age-structured, multi-stock, state-space spawner-116 

recruitment model to available data on spawners, harvests, and age composition at a population level1; 117 

(3) quantify the performance of the alternative harvest policies against objectives using closed-loop 118 

simulations across a range of plausible hypotheses representing alternative states of nature; and (4) 119 

characterize the trade-offs between harvest and diversity that emerge from step 4, and illustrate how 120 

alternative harvest policies perform relative to them.  121 

1.1 Study Area 122 

Chinook populations across Western Alaska have declined in abundance and productivity over the past 123 

decade (Ohlberger et al. 2016; Dorner et al. 2017). These declines have been particularly pronounced in 124 

the Kuskokwim River Basin (Figure 1) where some recent years (e.g., 2012-2014) have seen record low 125 

escapement to Chinook spawning grounds, though returns have increased to stable but well below 126 

                                                             

1 We use the term population to denote spawning populations that have been the subject of separate assessment related activities within the 
system (See Figure 1), they are neither a purely biologically or management based unit. 
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average in the years since then. The Kuskokwim historically supported one of the world’s largest Chinook 127 

subsistence fisheries, which is of importance to dozens of communities along the river that have some of 128 

the highest levels of subsistence dependence in the state of Alaska. Declines in Kuskokwim Chinook 129 

abundance have sharply reduced subsistence harvest, closed commercial fisheries, prompted widespread 130 

stakeholder concern about the future of the subsistence fishery, and led to disagreement among 131 

managers and stakeholders about the most appropriate way to manage Kuskokwim Chinook.  132 

Chinook spawn across at least two-dozen tributaries of the main-stem Kuskokwim, and monitoring of 133 

harvest, escapement, and age composition for Chinook has occurred since the mid-1970s with a focus on 134 

13 sub-basins monitored by weir or aerial surveys. These populations account for approximately half of 135 

annual escapement to the system, and total run size from 1976 and 2017 has been estimated via run 136 

reconstruction (Liller and Hamazaki 2016) scaled to drainage-wide mark-recapture estimates of total 137 

abundance (e.g., Smith and Liller 2017). 138 

1.2 Fishery objectives and alternative management actions 139 

As part of a broader exercise focused on building capacity among Kuskokwim stakeholders to engage in 140 

salmon management we held a series of workshops that included influential community members from 141 

throughout the river basin with a long history of active engagement in fishery management as well as US 142 

Fish and Wildlife Service and Alaska Department of Fish and Game biologists and fishery managers. These 143 

workshops included discussion of existing and potential Kuskokwim Chinook fishery and biological 144 

objectives and alternative management actions associated with them. From these discussions, we 145 

identified a suite of long-term objectives against which to quantify the performance of alternative 146 

management actions in the system (Table 1).  147 

1.3 Multi-stock state-space spawner-recruit model  148 
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We used a multi-stock state-space spawner-recruit model to characterize Chinook population diversity 149 

and dynamics in the Kuskokwim Basin (Staton et al. n.d.). This model is an extension of various single-150 

stock models (Fleischman et al. 2013; Staton et al. 2017) that simultaneously fits separate recruitment 151 

curves to incomplete population-specific escapement time series and mixed-stock harvest. We fit the 152 

model to time series of spawner abundance, harvest, and age composition in a Bayesian estimation 153 

framework using Markov Chain Monte Carlo methods to sample from the joint posterior distribution of 154 

all unknown quantities (implemented in JAGS; Plummer, 2017).  155 

The key quantities estimated by the state-space model included population productivity (i.e., maximum 156 

recruits-per-spawner), carrying capacity, latent recruitment states, lag-one correlation in recruitment, 157 

variance and covariance in recruitment within and among populations, and time-varying maturity 158 

schedules. Full details of data processing and the structure of the state-space model, including model code 159 

and detailed outputs, are provided in (Staton et al. n.d.) and associated supplements. Our base 160 

formulation of the state-space model assumed that all population are equally vulnerable to harvest, but 161 

in sensitivity analyses we relaxed this assumption. We chose to use posterior draws obtained from the 162 

most complex state-space model evaluated by Staton et al. (n.b). (SSM-VM) with a maximum effective 163 

sample size of 100 for the age composition data because (1) effective sample size is nearly always less 164 

than the true sample size due to violations to the multinomial sampling distribution (2) their simulations 165 

showed no loss in estimation performance with the additional complexity, and (3) it afforded us the ability 166 

to parameterize the model more fully with respect to recruitment variance.  167 

We used the posterior samples of population productivity and carrying capacity to quantify the range of 168 

predicted equilibrium trade-offs between aggregate harvest and conservation of population diversity 169 

across a range of mixed-stock harvest rates (Walters and Martell 2004; Walters et al. 2008).  170 

1.4 Closed loop forward simulations  171 
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To prospectively evaluate the performance of alternative harvest policies with respect to both fishery and 172 

conservation objectives, we developed a closed-loop simulation that consisted of three components: (1) 173 

an empirically parameterized multi-stock operating model that simulated the dynamics of Kuskokwim 174 

Chinook populations over time, (2) a management procedure model that assessed the state (i.e., total 175 

returning abundance) of the system each year, and applied a given harvest policy (defined by subsistence 176 

needs and basin-wide target harvest and spawner abundances), and (3) a performance model that tracked 177 

the outcomes of the management procedure for quantitative performance measures related to each 178 

fishery and conservation objective.  179 

Operating model 180 

We simulated future population trajectories for the 13 Kuskokwim populations for which we had data by 181 

projecting stock dynamics forward over 50 years (approximately eight generations starting in 2017), 182 

thereby generating a posterior predictive distribution of future states conditioned on the historical data. 183 

By simulating Kuskokwim Chinook dynamics in this manner, we ensured that predicted future spawner 184 

abundance and age structure were conditioned on the incomplete cohorts at the end of the data series 185 

(i.e., those cohorts from which one or more older age classes have not yet returned to spawn) and that 186 

uncertainties in the spawner-recruit relationships were propagated (i.e., by drawing from the posterior 187 

distributions of each estimated parameter and abundance state in each iteration of the simulation). We 188 

chose to use posterior draws obtained from the most complex state-space model evaluated by Staton et 189 

al. (n.b)., because their simulations showed no loss in estimation performance with the additional 190 

complexity, and it afforded us the ability to parameterize the model more fully with respect to recruitment 191 

variance. 192 

The simulated population complex was comprised of n populations whose dynamics were governed by 193 

Ricker type stock recruitment relationships (Ricker 1954): 194 
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 !",$ = &$'",$()*+,-,+./ 012
34-56,+ 47-56,+⁄ 9.:-,+ (1) 

where !",; is recruitment from brood year < for population =, &; and >$  are population specific intrinsic 195 

rate of growth (productivity) and within population density dependence, respectively, '",$  is spawner 196 

abundance, ? is the degree of temporal correlation in recruitment from one year to the next, !7")@,$  is 197 

the expected recruitment in the previous year, and A",$  is white noise variation in recruitment that is 198 

correlated among populations according to a common correlation parameter (C) following a multivariate 199 

normal distribution: 200 

 A",$~MVN(0, J), 

J = K
L@L@ ⋯ L@L$C
⋮ ⋱ ⋮

L$L@C ⋯ L$L$
P 

(2) 

Returns in year t, QR,$, were then a function of the proportion of individuals that mature and return to 201 

spawn at each age: 202 

 QR,; =S !R)T,;UT)V
W

TXY
 (3) 

where U is a maturity schedule composed of four age classes (4 through 7 for Kuskokwim Chinook). To 203 

incorporate the effects of small population size on reproductive success (e.g., allele effects and 204 

depensation), we set a quasi-extinction threshold at 50 spawners such that if spawner abundance fell 205 

below this threshold recruitment from that brood year was assumed to be zero. For simplicity, we 206 

assumed that straying among populations did not occur.  207 

In each year of the forward simulation, harvest (Ht,n) was subtracted from the return (Nt,n) according to 208 

the harvest control rules described in the following section (Management Procedure model). To simulate 209 
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the dynamics for the entire Kuskokwim system in each iteration of our forward simulations we expanded 210 

spawner abundance, harvest and recruitment by 1/D, where D is normally distributed with a mean of 0.56 211 

and standard deviation of 0.05 and represents an estimate of the proportional contribution of the 13 212 

monitored populations to total Kuskokwim Chinook production (Staton et al. n.d.). This assumes that the 213 

monitored populations are a representative sample of all Kuskokwim Chinook populations with respect 214 

to population characteristics and time series properties, but was necessary so that the harvest policies we 215 

evaluated were on a scale salient to management entities. 216 

Management procedure model 217 

The harvest policies we explored were defined by two key management objectives: a basin-wide 218 

escapement goal (Z[) and a harvest goal. Due to the priority placed on subsistence fishing, the harvest goal 219 

can be further defined as minimum harvests required to meet subsistence needs (\]^_) and a commercial 220 

harvest goal (\`ab) that specifies desired harvest once subsistence needs have been met. These goals, 221 

along with the predicted run size in a given year (QR) determine the harvest rate (cR) experienced by each 222 

population in the forward simulations:  223 

cR,$ =

⎩
⎪
⎨

⎪
⎧ 3Q̇R − Z[9 Q̇R⁄ , QjR − Z[ ≤ \]^_
l\]^_ + 3Q̇R − Z[ − \]^_9n Q̇R⁄ , QjR − Z[ > \]^_ 	∧ 	QjR − Z[ ≤ \]^_ + \`ab

(\]^_ + \`ab) Q̇R⁄ , QjR − Z[ > \]^_ 	∧ 	QjR − Z[ > \]^_ + \`ab
		

 (4) 

where Q̇R = ∑ QR,$$ . The forecasted run-size is QjR = Q̇Rst, where st is forecast error which is assumed to 224 

be lognormally distributed with a standard deviation equal to 0.27 (based on retrospective evaluation of 225 

forecast error in the Kuskokwim) (Staton and Catalano 2018).  Total harvest by population, Ht,j, is then  226 

 \R,u = cRQR,$(1 + sw) (5) 
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where sw reflects incomplete management control over the harvesting process and outcome uncertainty 227 

(Holt and Peterman 2006) and was assumed to be normally distributed with mean zero and standard 228 

deviation equal to 0.1. This harvest control rule results in exploitation rates that increase from zero at run 229 

sizes less than the escapement goal to a maximum when run size is equal to the escapement goal and 230 

target harvest, with the exploitation rate declining thereafter at larger run sizes (Figure 2). Further, it 231 

assumed that execution of the fishery was non-selection: the exploitation rate applied to all sub-stocks in 232 

the harvest mixture was equal each year. 233 

Harvest policies 234 

We quantified the performance of harvest policies across a broad range of basin wide escapement and 235 

harvest goals and then considered three contrasting harvest policies (Table 2) in more detail to illustrate 236 

how policies that prioritize different objectives are predicted to perform across a range of biological and 237 

fishery performance measures. The first policy sought to maximize potential harvest from the system by 238 

setting a basin wide escapement goal equal to that predicted to produce maximum sustained yield under 239 

equilibrium conditions. The second was a fixed harvest policy without any escapement goal where the 240 

harvest goal is equal to that required to meet minimum subsistence needs. This policy is meant to reflect 241 

a situation where fishery managers decide to solely focus on meeting subsistence needs, and minimize 242 

inter-annual variation in harvest, regardless of forecasted returns, with the assumption that harvests at 243 

the level of subsistence needs will not jeopardize long-term prospects for basin-wide sustainable use.  The 244 

third policy sought to maximize yield from the system but only once biological risks of extirpation to the 245 

least productive populations are minimized. Under this policy the harvest goal was set to equal that in 246 

policy 1 but the escapement goal was increased to a level that is predicted to result in no risk of driving 247 

the weakest populations towards extinction (see performance measures below).   Policy 1 is similar to the 248 

basin wide escapement goal approach to management that is currently in place in the Kuskokwim where 249 

fishery managers seek to ensure that the aggregate number of Chinook that make it to the spawning 250 
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grounds fall within the range predicted to provide expected yields greater than 100,000 while also 251 

meeting subsistence needs (recommended sustainable escapement goal range of 65,000-252 

120,000)(Hamazaki et al. 2012). However, policy 1 differs from current management because harvesting 253 

capacity is constrained in the Kuskokwim due to household processing and consumption constraints.     254 

Uncertain states of nature 255 

We simulated the biological and fishery dynamics of the Kuskokwim system across three alternative states 256 

of nature. This allowed us to evaluate how robust a given harvest policy is to key structural uncertainties 257 

in the system, something that is recognized as a best-practice in the application of closed-loop simulation 258 

models to inform decision making (Punt et al. 2016). The first state of nature assumed stationary spawner-259 

recruitment dynamics that follow a Ricker-type relationship with overcompensation at high spawner 260 

abundances (equations 1-3). This is the state of nature that is currently assumed by fishery managers in 261 

the Kuskokwim (Hamazaki et al. 2012) and widely across other salmon fisheries.  262 

The second state of nature we considered assumed there were long-term directional changes in 263 

population productivity and carrying capacity such that half way through the simulations the least 264 

productive stocks became more productive and the most productive stocks became less productive 265 

(Figure 5). In this scenario the productivity (αn) and carrying capacity (αn/>;) of individual stocks was 266 

assumed to be time-varying and to change over the course of a decade (from t=20 to t=30 in the 267 

simulations). These changes were meant to reflect a situation involving large changes in the productive 268 

capacity in some stocks and commensurate declines in others (e.g., due to changes in hydrology, 269 

geomorphology or life history characteristics) such that the overall production of the system remains 270 

unchanged but relative population contributions to production does. The magnitude of change we 271 

considered under this scenario is biologically plausible; it is within the ranges of changes in productivity 272 
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and capacity seen in other salmon systems, albeit at coarser spatial scales (Hilborn et al. 2003; Peterman 273 

and Dorner 2012; Dorner et al. 2017).  274 

The third state of nature we considered assumed that low frequency regime shifts occur that gave rise to 275 

the appearance of overcompensation, when in fact none was present. Under this scenario we assumed 276 

that individual spawner-recruitment relationships were governed by Beverton-Holt dynamics with cyclical 277 

variation in population productivity. To do this we transformed the Ricker spawner-recruitment 278 

relationship in equation 1 to a Beverton-Holt form (Hilborn and Walters 1992): 279 

R|y,j=
αy,j

1 +
αy,j
βj
	Sy,jÅ

	

αy,j = ÇÉÑ(2U Ü"
á
à)	((α$â + (α$âä)) − α$â) + α$â	

(6)	

where population productivity (αy,j) is time-varying following a cycle with a period equal to	å and 280 

amplitude equal to ä. We fixed	å and ä at 12 and 0.4, respectively based on exploratory simulations, to 281 

generate spawner-recruitment relationships with apparent overcompensation that approximates that 282 

observed in the Kuskokwim. The term â is a scalar that adjusts productivity such that long-term population 283 

equilibrium abundance in the absence of fishing is approximately the same as those assuming a Ricker 284 

spawner-recruitment relationship. We fixed â	at 0.76 based on further exploratory simulations that 285 

showed that long-term basin-wide equilibrium spawner abundances were the same under the alternative 286 

spawner-recruitment formulations when average productivity in the Beverton-Holt formulation is scaled 287 

by 0.76. Note that this scalar may depend on the spawner-recruit relationships used, and should therefore 288 

be obtained separately for analyses of different populations in other systems. 289 

Performance measures 290 

Biological and fishery objectives were identified through workshops with fishery managers and 291 

stakeholders (Table 2), and we quantified the relative ability of the alternative harvest policies to attain 292 
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them according to a set of performance measures. Performance measures related to harvest objectives 293 

included average catch and the inter-annual coefficient of variation (CV) in catch, both over the last 20 294 

years of the 50 year simulations. We quantified performance relative to the objective of maximizing 295 

spatial equity in access to salmon across the river basin as the proportion of populations whose average 296 

spawner abundance over the last 20 years of each Monte Carlo trial was greater than or equal to the 297 

population specific estimate of SMSY. Lastly, we quantified biological performance as the proportion of 298 

populations whose average spawner abundance over the last 20 years of the Monte Carlo trial dropped 299 

below a quasi-extinction threshold of 5% of equilibrium population size. Each performance measure was 300 

summarized across 500 Monte Carlo trials, each parameterized by a unique draw from the posterior 301 

distribution of the state-space model fitted to Kuskokwim data (Staton et al. n.b). 302 

Results 303 

2.1 Population diversity 304 

We found clear evidence of heterogeneity in productivity and carrying capacity across the Kuskokwim 305 

Chinook populations for which there were data (Figure 3a). Kuskokwim Chinook populations ranged in 306 

equilibrium size from approximately 1000 to 18,000 spawners and in productivity from 1.65 to 5 recruits-307 

per-spawner (median posterior estimates). There was a weak tendency for larger populations to be more 308 

productive, however, no strong spatial patterns in productivity were found (Figure 1 and 3a). We used 309 

this observed heterogeneity to quantify equilibrium trade-off between harvest and protection of 310 

population diversity in the system (Figure 3b). This illustrates that the relatively high harvest rates that 311 

can be sustained by the most productive populations come at the cost of increased risk of over-312 

exploitation for those that were found to be less productive.  The large uncertainty in our estimates of 313 

productivity and carrying capacity result in large uncertainty in these predicted trade-offs.   314 

2.2 Performance of alternative harvest policies and trade-offs among objectives 315 
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Our closed-loop simulations indicated that mixed-stock harvest was maximized at intermediate basin 316 

scale escapement goals (~60,000-120,000)(Figure 4a, which is consistent with independent yield analyses 317 

from the stock aggregate (Hamazaki et al. 2012).  At escapement goals greater than 120,000, harvests are 318 

reduced due to more frequent fishery closures, and at escapement goals lower than 60,000 harvests are 319 

reduced due to the loss of production from the weakest (i.e., least productive) populations in the system. 320 

Harvest stability was predicted to be greatest at both low escapement goals and target harvests (Figure 321 

4b) and the chances of meeting tributary spawner goals and minimizing risks of driving individual 322 

populations to extirpation were greatest when target harvests were low and/or basin-wide escapement 323 

goals were high (Figure 4c and d). 324 

There was strong asymmetry in trade-offs between harvest and biological or social objectives, with the 325 

strength of the asymmetry in trade-offs dependent on the harvest policy that was applied. The harvest 326 

policy that sought to maximize mixed-stock harvest (policy 1) did so at the costs of increased inter-annual 327 

variation in harvest, reduced chances of meeting tributary spawner goals and elevated risk of weak stock 328 

extirpation (Figures 4 and 5). In contrast, relative to policy 1, the fixed harvest approach (policy 2) 329 

increased inter-annual stability in harvest by 22%, increased the chances of meeting tributary spawner 330 

goals by 83%, and reduced median extirpation risk (Figure 3 and 4). This came at the cost, on average, of 331 

a 46% reduction in realized overall harvest. The harvest policy that sought to minimize the risk of driving 332 

weak stocks to extirpation (policy 3) did so at the cost of a 20% reduction in harvests and 16% reduction 333 

in inter-annual stability in harvests, but with the benefit of increasing the chances of ensuring equitable 334 

access to Chinook (i.e., meeting tributary goals) by 84% from 46% to 85%.  335 

Though there was large uncertainty in the predicted performance of alternative policies, by propagating 336 

uncertainty through the closed-loop simulations we can interpret fishery and biological outcomes 337 

probabilistically. For example, we found that there was a 41% chance that at least 90% of tributary-level 338 

spawner goals would be met if policy 3 was chosen compared to a 1% or 35% chance if policy 1 or 2 were 339 
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chosen, respectively. Or from a protection of biocomplexity perspective, there was less than a 20% chance 340 

of causing at least one population to become extirpated under policy 3, but a 70% or 24% chance if policy 341 

1, or 2 were chosen, respectively. 342 

2.3 Effects of alternative states of nature 343 

We found that the strength of trade-offs between harvest and stability, equity, or risk to diversity were 344 

mediated by non-stationarity in the system. When there were large shifts in population diversity over 345 

time (Figure 6), we found that similar magnitudes of reductions in harvest must be sacrificed to protect 346 

diversity (~30%) but that commensurate increases in equity in access to Chinook were larger than when 347 

there were not regime shifts in the system  (55% vs 45 %; Figure 7; compare grey and blue bars). In 348 

addition, we found that regardless of the harvest policy overall, extirpation risk was elevated were there 349 

were pronounced regime shifts in the system. 350 

The performance of harvest policies, and their resulting trade-offs, were also sensitive to the underlying 351 

drivers of recruitment variation. When recruitment dynamics were driven by a time-varying Beverton-352 

Holt type relationship, absolute harvest and its inter-annual variation were predicted to be lower relative 353 

to the alternative spawner-recruitment dynamic scenarios (Figure 7; compare green bars to grey and blue 354 

bars), and the magnitude of reduction in harvest between harvest policies was greater (50% vs 27%). 355 

However, the chances of meeting tributary goals, and extirpation risk, were generally similar across all 356 

three spawner-recruitment dynamic scenarios and asymmetry in harvest-diversity trade-offs was 357 

dampened: a 50% reduction in predicted harvest from the maximize yield to minimize risk policies was 358 

predicted to result in a 45% increase in the chances of meeting tributary goals, compared to 26% and 45%, 359 

respectively, under the stationary Ricker scenario.   360 
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Discussion  361 

Four key findings emerge from our analyses of Chinook population diversity and performance of 362 

alternative harvest policies in the Kuskokwim system. First, we found clear evidence of population 363 

diversity where productivity and carrying capacity can vary by as much as 3-fold and 18-fold among 364 

populations, respectively. This population diversity gave rise gives to a clear trade-off between mixed-365 

stock harvest and conserving population diversity: high harvest rates, which can be sustained by the most 366 

productive populations, can come at the cost of increased risk of overfishing those that are less 367 

productive.  Second, this trade-off was strongly asymmetric: our analysis showed that giving up relatively 368 

small amounts of harvest resulted in both large reductions in risk to weak stocks and large gains in spatial 369 

equity among subsistence communities in access to the resource. For example, a 20% reduction in average 370 

annual mixed-stock harvest by shifting from a policy focused on mixed-stock yield to one that also 371 

considers risk to population diversity resulted in an 84% increase in the chances of ensuring equitable 372 

access to Chinook across the communities in the river basin and a near complete elimination of risk of 373 

driving weak populations to extinction.  374 

Third, we found that it is possible for the strength of these harvest-population diversity trade-offs to be 375 

mediated by external changes in the environment. When the environment drives pronounced shifts over 376 

time in the size and productivity of populations in the system (e.g., a regime shift) giving up a specific 377 

amount of harvest results in larger gains in spatial equity in access to the salmon for subsistence needs 378 

relative to scenarios where there is not a regime shift. These predicted benefits are dependent on the 379 

magnitude of change in population size and productivity over time. While the magnitude of change we 380 

considered was within the ranges of changes in productivity and capacity seen in other salmon systems 381 

(Hilborn et al. 2003; Peterman and Dorner 2012; Dorner et al. 2017), they were of a large magnitude and 382 

occurred over a short (10-year) time period (Figure 5). As a result, our findings might be appropriately 383 
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considered an upper bound to the potential benefits of protecting population diversity within the system 384 

from a harvest-diversity trade-off perspective. 385 

Fourth, we found that the performance of harvest policies, and their resulting trade-offs were sensitive 386 

to the true underlying drivers of recruitment variation. Many salmon systems, including the Kuskokwim 387 

are assumed to exhibit strong overcompensation where survival declines at high spawner abundance (i.e., 388 

a Ricker type spawner-recruitment relationship). However, cyclical environmental forcing can lead to 389 

apparent overcompensation in observed spawner-recruitment relationships because years of high 390 

recruitment due to favourable environmental conditions are followed by years of low recruitment due to 391 

unfavourable conditions (Parma and Deriso 1990). The true drivers of recruitment in a system are rarely 392 

known; this uncertainty can fuel debate about the fishery and ecological consequences of alternative 393 

assumptions about the structural form of spawner-recruitment relationships when providing harvest 394 

advice (Schindler et al. 2019). It is well known that fishery reference points are more biologically 395 

conservative (e.g., 'ç,é is higher) when one assumes a Ricker type spawner-recruitment relationship 396 

rather than a Beverton-Holt one (Fleischman et al. 2013); however, the performance of alternative harvest 397 

policies across these uncertain states of nature are rarely fully evaluated. We found that absolute harvest 398 

and its inter-annual stability were predicted to be lower, and that more harvest had to be foregone to 399 

minimize extirpation risk and increase chances of ensuring equitable access to Chinook, under the time-400 

varying Beverton-Holt scenario relative to the Ricker ones.  As a result, the asymmetry in harvest-diversity 401 

trade-offs was weaker under the Beverton-Holt scenario. 402 

As is inevitable with any analysis of a complex socio-ecological system, we made a number of simplifying 403 

assumptions. First, due to incomplete monitoring coverage we were only able to model the dynamics of 404 

Chinook populations that comprise approximately half of the production from the system (Figure 1). This 405 

implicitly assumes that monitored stocks are a representative sample of all populations with respect to 406 

population characteristics and time series properties. If this assumption is severely violated then our 407 
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inference about trade-offs and aggregate yield may be biased. For example, if only the most productive 408 

populations are monitored then we would have underestimated risks to population diversity. 409 

Nonetheless, given that the populations with data are distributed across the basin (Figure 1) and range 410 

widely in both their productivity and size we suspect that we have captured the general bounds of the 411 

system. It should also be noted that the weakest (least productive) spawning populations in the 412 

Kuskokwim may have been extirpated early in the development of the fishery for this river, and are thus 413 

absent from our dataset.  414 

Second, our simulations treated each population as a closed spawning population because we did not 415 

consider the effects of straying between and within basins.  Straying is fundamental characteristic of 416 

salmon and clearly an important contributor to adaptation and fitness. Failing to account for straying 417 

could lead to overestimating risk of extirpation because populations at low abundance cannot be 418 

“rescued” by neighbouring populations. In general, it is hypothesized that the relative frequency of 419 

straying in wild salmon is related to stability of habitat quality, extent of specialization for freshwater 420 

habitat, and variation in age at maturity (Quinn 2018b). As a result, straying is considered to occur at lower 421 

levels in Chinook (and particularly stream-type Chinook like those in the Kuskokwim) than in other Pacific 422 

salmon like pink and chum. Empirical estimates of Chinook stray rates are available for hatchery fish and 423 

range from 0.1 to 10% for stream-type Chinook in the Columbia Basin (Westley et al. 2013). In light of the 424 

above magnitude of straying, and the fact that the populations we considered typically had spawning 425 

locations that were greater than 100 km away from the nearest other populations, we considered the 426 

magnitude of straying to likely be negligible but nonetheless consider this an area that warrants future 427 

study. Strontium isotopes, which have recently been used to uncover fine-scale natal origins and 428 

migration histories of Chinook in western Alaska (Brennan et al. 2019), offer a potentially useful tool to 429 

quantify the magnitude of straying in the large river basins. 430 
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Lastly, our closed-loops simulations are empirically parameterized from a multi-stock spawner-recruit 431 

analysis (Staton et al. n.d.) that assumes all populations in the system have historically been equally 432 

vulnerable to harvest, which was also made in our analysis. While the vast majority of harvest has 433 

historically occurred in the lower river near the community of Bethel, differences in run-timing and the 434 

timing of the fishery (typically front-loaded due to drying weather), are likely to have led to headwater 435 

fish being more vulnerable to harvest than lower river populations (Hamazaki 2008). The key findings from 436 

our closed-loop simulations are robust to this assumption (Figure S1) but modelling population variation 437 

in run-timing and the timing of fisheries are logical extensions to the work we present here.  438 

We chose three simple and contrasting harvest policies to illustrate their predicted performance against 439 

Chinook fishery and population diversity objectives in the Kuskokwim. While the contrasting policies were 440 

not intended to exactly match the current approach to management, there are some general insights that 441 

emerge from our analysis that are of relevance for management of the Chinook fishery moving forward.  442 

We find that a relatively low overall harvest rate is more important than a strict, high escapement goal, 443 

with respect to minimizing extirpation risk. This is because our simulations suggest that subsistence needs, 444 

and spatial equity in access to fish, can be met with relatively low risk to population diversity even when 445 

the escapement goal is very low. However, as harvest goals increase above those required to meet 446 

subsistence needs the importance of an escapement goal becomes more pronounced to the point where 447 

if target harvest is at or near its historic maximum (~150,000) managing for the upper end of the basin 448 

scale escapement goal derived from optimal yield profiles (Hamazaki et al. 2012) is necessary and 449 

adequate to minimize extirpation risk. An obvious next step in the Kuskokwim would be to implement a 450 

Management Strategy Evaluation that incorporates short-term within-season dynamics and decision 451 

making, population differences in run-timing (Smith and Liller 2017b) and harvest vulnerability (Hamazaki 452 

2008), with the formal engagement of decision makers and stakeholders in the process (e.g., Cunningham 453 

et al. 2018).  454 



	

	 22 

The performance, and merits, of alternative harvest policies in salmon management have been debated 455 

for years. Many salmon systems are managed with escapement goals based on basin scale yield 456 

predictions, as in the case in many parts of Alaska and British Columbia. Time varying policies have been 457 

shown through simulations to yield improved performance against fishery and conservation objectives 458 

when there is low frequency changes in the productivity of salmon stocks over time (Collie et al. 2012). 459 

However, these types of harvest policies can lead to relatively high variability in harvest, and require 460 

precise information on run size to inform annual harvest rates. In instances where stability in harvest and 461 

large errors in forecasts dominate, fixed harvest policies (with caps based on conservation constraints) 462 

can perform well against fishery and conservation objectives (Hawkshaw and Walters 2015).  463 

Maintaining population diversity is increasingly recognized as a hallmark of sustainable and resilient 464 

fisheries management. However, in large river basins (e.g., Kuskokwim, Yukon, Skeena, and Fraser) with 465 

relatively little fine spatial and temporal management control doing so can be challenging. Our work 466 

provides a blueprint for characterizing salmon population diversity in large river basins with relatively 467 

limited management control and evaluating harvest-population diversity trade-offs among alternative 468 

harvest policies within them. 469 
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Table 1. Fishery and conservation objectives, along with alternative management actions, identified by 596 

Kuskokwim River stakeholders.  597 

Objectives Alternatives 
• Maintain population and species diversity 
• Maximize equity among villages in access 

to salmon resource 
• Ensure and protect food security for 

subsistence users 
• Maximize commercial fishing 

opportunities 

 

• Fixed harvest (i.e., minimum required to 
meet subsistence needs) 

• Manage for basin wide maximum 
sustainable yield 

• Manage for escapements greater than 
those predicted to maximize yield so as 
to protect less productive stocks and 
ensure equity among villages in access to 
salmon  

• Manage for population specific 
escapement goals  

 598 

Table 2. Alternative harvest policies considered in the closed loop simulations.  599 

     Policy 
Basin wide 
escapement 
goal (èê) 

Subsistence 
needs (ëíìî) 

Commercial 
harvest goal 
(ëïñó) 

Maximize basin wide harvest 75,000 65,000 105,000 
Fixed harvest at levels needed for subsistence and 
maximize harvest stability 5,000 65,000 0 

Maximize harvest while minimizing biological risk  135,000 65,000 105,000 

 600 
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Table 3. States, biological and policy parameters and associated values. Description of states and 601 

parameters in the close loop simulation model described in the main text along with their associated 602 

values where appropriate. 603 

Parameter Description (with median values for base scenario where appropriate) Equation at first 
use 

'",; Spawner abundance in brood year < from population Ñ 1 
!",; Recruitment in brood year < from population Ñ 1 

&; 
Productivity (maximum recruits-per-spawner at small population size) 
for population Ñ 1 

>; 
Magnitude of within brood-year density dependent effects on survival 
for population Ñ 1 

? Strength of lag-one temporal correlation in survival [0.23] 1 
L; Recruitment variation (SD units) for population Ñ [0.69] 2 

Cò,$ 
Correlation in recruitment variation between population É	and = [0.18-
0.28]  

UV:ö Age-at-maturity proportions [4yrs=0.25, 5yr=0.36, 6yr=0.35, 7yr=0.4] 3 

QR,; Adult salmon returning to spawn prior to any harvest in fisheries in 
calendar year õ from sub- stock Ñ 3 

Q̇R Total aggregate run-size in calendar year õ 4 
QjR Forecasted aggregate run-size in calendar year õ 4 
Z[  Basin-wide escapement goal 4 
\]^_ Basin-wide minimum harvest required to meet subsistence needs 4 
\`ab Basin-wide commercial harvest target 4 
c;,R Harvest rate experienced by population	Ñ in calendar year õ  4 
st Forecast error [~ln(1, 0.27)] 4 
sw Outcome uncertainty [~N(0,0.1)] 5 

å Period of time-varying productivity in Beverton-Holt spawner-
recruitment model formulation [12] 6 

ä Amplitude of time-varying productivity in Beverton-Holt spawner-
recruitment model formulation [0.4] 6 

â	 
Scalar that adjust productivity in Beverton-Holt formulation so that 
long-term equilibrium abundance is equal to that under the Ricker 
spawner-recruitment [0.67] 

6 

604 
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 605 

Figure 1. The Kuskokwim River basin. General spawning distribution of the 13 Chinook populations for 606 

which there are estimates of spawner abundance based on either weir or aerial surveys. 607 

  608 
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 609 

Figure 2. Kuskokwim Chinook harvest control rule. Illustration of mixed-stock harvest rate as a function 610 

of true run-size across a range of escapement goals (colored lines) assuming a relatively high (175,000 611 

fish) harvest goal (equation 4). The deterministic harvest control rule is shown but in the closed loop 612 

simulations the realized harvest rate in any given year deviate from this relationship as a function of 613 

forecast error and outcome uncertainty.   614 
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 615 

Figure 3. Kuskokwim Chinook population diversity and trade-offs with harvest. (a) Posterior distributions 616 

of intrinsic productivity (alpha – recruits per spawner at small population size) for individual population 617 

along with corresponding estimates of equilibrium population size. Points are colored to increase visual 618 

contrast and numbers correspond to the populations in Figure 1; (b) Predicted basin wide equilibrium 619 

yield across a range of fixed harvest rates and corresponding risks to population diversity. Overall yield 620 

from the system is predicted to be maximized at a harvest rate of ~ 50%, but this comes at the cost of 621 

putting ~20% of the populations at risk of extirpation.  622 

  623 
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 624 

Figure 4. Predicted consequences of alternative harvest policies. Each policy is defined by a combination 625 

of basin scale harvest (y-axis) and escapement goals (x-axis). Performance measures (z-axis) are calculated 626 

over the last 20 years of each Monte Carlo trial (500 in total), which project stock dynamics 50 years 627 

forward in time, and correspond to (a) median harvest (in thousands of Chinook salmon), (b) harvest 628 

stability (1/ coefficient of variation [CV] in harvest), (c) proportion of population tributaries with spawner 629 

abundances that exceeded a tributary specific spawner target (SMSY) and (d) proportion of populations 630 

extirpated. Three illustrative harvest policies are overlaid on each panel (see Table 2 for more details): (1) 631 

a policy that seeks to maximize yield, (2) a fixed harvest policy corresponding to minimum subsistence 632 

needs and (3) a policy that seeks to reduce biological risks to populations while also achieving relatively 633 

high harvests.   634 
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 635 

 636 

Figure 5. Trade-offs between harvest policies. Predicted ability of three alternative harvest policies (see 637 

Figure 4 and Table 2) to meet fishery (a: harvest and b: harvest stability), equity (c: proportion of 638 

population tributaries with spawner abundances that exceeded a tributary specific spawner goals) and 639 

conservation (d: proportion of populations extirpated) objectives. Each bar is the median (and 25th and 640 

75th percentiles) performance of a given policy as calculated over the last 20 years of each Monte Carlo 641 

trial (500 in total). Contrasting policies within and among panels illustrates trade-offs in the system 642 

between harvest, equity and conservation, as well as asymmetry in them – but it is important to recognize 643 

that these three policies are only three points in the policy space as defined by this analysis. 644 
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 646 

 647 

Figure 6.  Time varying population diversity. Example of simulated changes (arrows) in the productivity 648 

and size of individual Chinook populations beginning 20 years into the 50 year forward simulations. Each 649 

point is the median estimated productivity and equilibrium size for a given population as estimated from 650 

the multi-stock state-space spawner-recruit model presented in Staton et al (n.b).  651 

  652 
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 653 

 654 

Figure 7.  Trade-offs between harvest policies across alternative states of nature.  Performance of 655 

alternative harvest policies (1 and 3 from Figure 4) across three alternative forms of underlying stock 656 

recruitment dynamics (grey bars: stationary Ricker type spawner-recruitment relationship; blue bars: time 657 

varying Ricker spawner-recruitment relationship (Figure 6); green bars: time varying Beverton-Holt 658 

spawner-recruitment relationship).  These plots illustrate that while the general trade-offs are robust to 659 

structural uncertainty in the underlying form of the spawner-recruitment dynamics, the magnitude and 660 

asymmetry of the trade-offs are sensitive to the underlying drivers of variation in recruitment.    661 
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 663 

Figure S1. Sensitivity of trade-offs between harvest policies to alternative harvest vulnerability 664 

assumptions. Predicted ability of three alternative harvest policies to meet fishery (a: harvest and b: 665 

harvest stability), equity (c: proportion of population tributaries with spawner abundances that exceeded 666 

a tributary specific spawner goals) and conservation (d: proportion of populations extirpated) objectives 667 

based on simulation parameterized from a multi-population spawner-recruit model that assumes all 668 

populations in the system have historically been unequally vulnerable to harvest (in contrast to base 669 

model that assumes all populations are equally vulnerable; see Figure 5). Each bar is the median (and 25th 670 

and 75th percentiles) performance of a given policy as calculated over the last 20 years of each Monte 671 

Carlo trial (500 in total).  672 
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