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II. ABSTRACT 
Management of fisheries for Pacific salmon Oncorhynchus spp. in western Alaska relies heavily 

on pre-season run forecasts to gauge the potential for harvest opportunities and schedule potential 
openers. Typically, run forecasts focus primarily on the anticipated size of the run in terms of numbers 
of returning fish and are commonly derived from sibling relationships or recent run averages and trends 
in productivity.  However, another important aspect of a salmon run is the phenology (i.e., timing) with 
which it occurs. The broad-scale phenology of these runs is often fairly predictable in that they typically 
begin and end within the same several weeks each year. However, substantial uncertainty surrounds 
finer-scale characteristics of run timing including the date of peak run timing and the duration (i.e., how 
quickly the run escalates and terminates) as these qualities can vary substantially between years.  

Uncertainty in these temporal qualities of the annual run makes in-season management difficult 
because the proportion of the run that has passed (and has yet to pass) is unknown on any given day of 
the run. Given a daily index of in-river abundance, such as a test fishery catch-per-unit-effort (CPUE), 
tower count, or sonar count, it is difficult to discern whether the run is larger or smaller than average 
without a priori information about year-specific run timing. Thus, the ability to predict run timing could 
improve in-season management of Pacific salmon by providing an estimate of how much of the run has 
passed, which would presumably increase the precision of in-season run size predictions. For this 
reason, a model that reliably forecasts run timing could largely aid efforts to develop in-season run size 
prediction models. 

Runs that are earlier and smaller or later and larger than average are especially problematic to 
in-season management because both scenarios mimic averaged sized runs with average timing based on 
early in-season information. If a positive relationship exists between run timing and size, then these 
small/early and large/late runs will be more common. These scenarios have been found to be especially 
troublesome for the efficacy of the daily opening/closure management system to both meet (and not 
overshoot) escapement goals and to allow escapement (and harvest) to be dispersed proportionately 
throughout the run. These relationships should be investigated for other stocks in western Alaska so 
fishery managers are aware of their prevalence (or lack thereof). 

In the Kuskokwim River, located in western Alaska, Chinook salmon return beginning in late May 
and continuing through early August. While run timing forecast models have been investigated for other 
salmon stocks in western Alaska, such as Bristol Bay sockeye salmon and Yukon River Chinook salmon, 
no published run timing models currently exist for Kuskokwim River Chinook salmon. Given the recent 
declines in Chinook salmon stocks, particularly in the Kuskokwim River, it is imperative that managers 
have access to tools for predicting run abundance during the fishing season. Based on the potential 
utility of run timing forecasts for in-season management, development of such models could prove 
valuable to Kuskokwim area fishery managers. Having these tools is especially important when run 
abundance is low so that managers can effectively guard against overharvest while safely allowing for 
subsistence harvests that are critical to the economy and culture of the region.  

We investigated to what extent run timing could be forecasted for the Kuskokwim River Chinook 
stock using available environmental variables, and what extent incorporating run timing predictions 
would improve precision of run size estimates. We hypothesized that environmental and hydrologic 
factors that serve to impede or advance riverine entry in other systems should result in the same 
responses in the Kuskokwim River Chinook stock and that the value of these models to in-season 
management is high.   Specifically, our objectives were to: 

(1) Quantify associations between run timing and environmental variables,  
(2) Assess relationships between run timing and run size, 
(3) Evaluate the utility of a run timing forecast model to in-season run size predictions, 
(4) Increase stakeholder familiarity with how run timing forecasts could be used by managers. 

 



We met these objectives in two manuscripts, one that has been published in Fisheries Research 
and one that is in its second revision with the Canadian Journal of Fisheries and Aquatic Sciences.  The 
first involved the development of an objective and adaptive statistical approach (using model-averaging 
and a sliding window algorithm to select predictive time periods, both calibrated annually) to deal with 
multidimensional selection of four climatic variables to predict run timing (Objective 1) based entirely on 
predictive performance. Forecast cross-validation was used to evaluate the performance of three 
forecasting approaches to predicting run timing: the null (i.e., intercept only) model that did not predict 
run timing from climatic variables, a single variables run timing prediction model with the lowest mean 
absolute error, and a model-averaged timing model across 16 nested linear models.  As of 2016, the null 
model had the lowest mean absolute error (2.64 days), although the model-averaged forecast 
performed as well or better than the null model in the majority of retrospective years. The model 
averaged forecast had a consistent mean absolute error regardless of the type of year (i.e., average or 
extreme early/late) the forecast was made for, which was not true of the null model. The availability of 
the run timing forecast was not found to increase overall accuracy of in-season run assessments in 
relation to the null model, but was found to substantially increase the precision of these assessments, 
particularly early in the season.  IN this analysis we also investigated relationships between run timing 
and run size (Objective 2) and found none. 

In our second manuscript, we assessed the performance of two Bayesian information-updating 
procedures to predict the run size during the season (Objective 3): one that uses auxiliary run timing 
information and one that does not, and compared the performance to methods that did not involve 
updating. We found that in-season Bayesian updating provided more accurate run size estimates during 
the time when harvest decisions needed to be made, but that the incorporation of run timing forecasts 
had little utility in terms of providing more accurate run size estimates. The latter finding is conditional 
on the performance of the run timing forecast model we used; a more accurate timing forecast model 
may yield a different conclusion. The Bayesian approach we developed provided a probabilistic 
expression of run size beliefs, which could be useful in a transparent risk-assessment framework for 
setting and altering harvest targets in-season.  

The information from these analyses was disseminated to stakeholders by integrating our work 
into the broader AYKSSI Capacity-Building Project (Objective 4).  We attended these stakeholder 
meetings where we gave presentations on run timing and in-season management more broadly.  We 
received thoughtful suggestions from stakeholders for improvement of our work and helped to build 
stakeholder capacity to engage with scientist and managers regarding this type of work.  



III. PRESS RELEASE 
 

Salmon return each year to their natal rivers to spawn, putting them within reach of people who 
rely on the runs for food, income, and cultural enrichment.  Responsible management of the harvest of 
these salmon is an ever-present goal for these fisheries.  Management of salmon harvest during the run 
is a difficult business because managers are never quite sure how many salmon will return to the river to 
spawn.  They often rely on noisy indicators of run strength from test fisheries or verbal reports on what 
fishers are seeing on the river.  Having some idea of the timing of the run is often desired because, for 
example, if it is known that that run is just getting started, then there should be many more fish on their 
way that could be harvested.  Run timing is affected by environmental conditions such as temperature 
and ice cover.  If these variables can measured before the run starts, then the timing of the run could be 
predicted, and ultimately the runs managed more effectively.  A team of researchers from Auburn 
University has been studying run timing of Kuskokwim River Chinook salmon since 2016 to better 
understand whether run timing is predictable from these environmental variables and whether 
including run timing predictions into management leads to improved performance.  The Auburn team 
build a complex statistical model to select which variables to use to predict timing, as well as when and 
where to measure those variables.  They found that indeed, run timing is predictable from things like 
water temperature and ice cover, but they also found that when they included run timing into run size 
estimates and harvest management decisions, there was not much improvement in performance.  It 
could be that the variables don’t do a good enough job of predicting run timing when all of the other 
sources of variability that could affect the fishery are considered.  Ultimately, the Auburn team hopes to 
provide fishery managers and stakeholders with better tools to help them move forward with decisions 
on when, where, and how many Chinook salmon to harvest in the Kuskokwim and beyond.  



IV. PROJECT EVALUATION 
 
The proposed project had four objectives as follows: 
 
Objective 1: Quantify associations between run timing and environmental variables.  We completed this 
objective as planned.  In Appendix A, we investigated predictive relationships between run timing and 
environmental variables for Kuskokwim River Chinook salmon. First, we quantified annual run timing at 
the Bethel gillnet test fishery. Then we investigated predictive relationships by fitting regression models 
between run timing quantities (median run date and duration) and potential environmental drivers of 
riverine entry. The environmental variables included air temperature, sea surface temperature, ice 
cover, and the PDO index.  The models were dynamic and annually adjusted the weighting factors on the 
predictors, the time window for their inclusion, and the locations at which they are measured based on 
predictive performance.  We found relationships between run timing and environmental factors, but the 
resulting run timing predictions performed no better at predicting end of season test fishery CPUE, on 
average, than the mean run timing prediction. 
 
Objective 2: Assess relationships between run timing and run size.  This objective was completed as 
planned.  In Appendix A, we assessed whether run timing was predictable from run size for Kuskokwim 
River Chinook salmon and found no associations.  We did not pursue this issue further in subsequent 
analyses. 
 
Objective 3: Evaluate the utility of a run timing forecast model to in-season run size predictions.  We 
completed this objective as planned.  We used a retrospective analysis to evaluate the degree to which 
using run timing forecasts would have increased the accuracy of in-season run size predictions for 
Kuskokwim River Chinook salmon for the years 1995 – 2017. We also broadened the scope of the 
analysis to assess whether Bayesian updating of run size predictions during the run as new observations 
are available would perform better than using either a pre-season forecast or in-season test fishery 
predictions alone.  To accomplish this objective we developed a probabilistic Bayesian run prediction 
tool that we took beyond this objective by introducing it to in-season managers.  The tool was used 
during the 2018 run.  We report on this objective in Appendix B. 
 
Objective 4: Increase stakeholder familiarity with how run timing forecasts could be used by managers.  
We shared our findings with area stakeholders and biologists at the November 2017 Capacity Building 
Workshop in Bethel. At the meeting we presented our findings on the predictive performance of run 
timing forecast models and their utility for in-season run size predictions via oral presentation.  In 
addition, we incorporated run timing into the development of a probabilistic Bayesian run size updating 
tool. Specifically, we included an option in which users can specify whether the run timing is expected to 
be early, average, or late.  Selecting these different options affects the model’s interpretation of test 
fishery data and this impacts the magnitude of run size forecasts.  For example, expecting an early run 
would suggest that there is less of the run yet to come and thus smaller overall run than would be 
predicted from a late arriving run, given identical in-season data.  The run prediction tool was made 
available via an online application that we developed, which allowed stakeholders and managers to 
access and use the tool throughout the run via a user-friendly interface.  The tool can be accessed at 
https://bstaton.shinyapps.io/BayesTool/.  The user manual can be accessed at 
https://bstaton.shinyapps.io/BayesTool_UserMan/.  Technical documentation can be accessed at: 
https://bstaton.shinyapps.io/BayesTool_TechDoc/. 
 
 

https://bstaton.shinyapps.io/BayesTool/
https://bstaton.shinyapps.io/BayesTool_UserMan/
https://bstaton.shinyapps.io/BayesTool_TechDoc/


V. DELIVERABLES 
 
The findings of our project have been and will continue to be disseminated via conference and 
management meeting presentations and peer-reviewed manuscripts.  We have completed five 
presentations, attended tone meeting, and submitted two manuscripts for peer review publication with 
one having been published and the other under review.  We have also developed an online computer 
application to allows stakeholders and managers consider run timing in making in-season run size 
predictions. 
 
Reports: 
Semiannual progress reports January 2017, July 2017, and January 2018. 
 
Presentations: 
Staton, B. A., M. J. Catalano, T. M. Farmer, A. Abebe, and F. S. Dobson. 2018. Development and 

evaluation of a Pacific Salmon migration timing forecast model for Kuskokwim River Chinook 
Salmon. Western Division of the American Fisheries Society Conference. Anchorage, Alaska. 

Staton, B. A. and M. J. Catalano. 2018. Evaluation of several approaches to Bayesian updating of pre-
season indicators of run strength in Pacific Salmon fisheries. Western Division of the American 
Fisheries Society Conference. Anchorage, Alaska. 

Staton, B. A., M. J. Catalano, and T. Farmer. 2017. Development and evaluation of a run timing forecast 
model for Kuskokwim River Chinook salmon.  AYKSSI Capacity Building Workshop, Bethel, Alaska. 

Staton, B. A. and M. J. Catalano. 2017. Evaluation of several approaches to Bayesian updating of pre-
season indicators of run strength in Pacific Salmon fisheries. American Fisheries Society Annual 
Conference. Tampa, Florida. 

Staton, B. A., M. J. Catalano, T. Farmer, A. Abebe, S. Dobson. 2017. Climatic variable selection across 
space and time: development of a Pacific salmon migration timing forecast model. Southern Division 
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Manuscripts: 
Staton, B. A. and Catalano, M. J.  Under review. Bayesian information updating procedures for Pacific 

salmon run size indicators: evaluation in the presence and absence of auxiliary migration timing 
information. Canadian Journal of Fisheries and Aquatic Sciences.  Decision: major revision.  
Submitted revised manuscript on 7/31/2018. 

Staton, B. A., M. J. Catalano, T. M. Farmer, A. Abebe, F. S. Dobson. 2017. Development and evaluation of 
a migration timing forecast model for Kuskokwim River Chinook salmon. Fisheries Research 194:9-
21. 
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VI. PROJECT DATA SUMMARY 
 
Our analysis produced simulated data sets and parameter estimates from Bayesian and maximum 
likelihood assessment models.  All model outputs are available upon request from the PI. 
 
 
VII. APPENDIX: SUBMITTED OR DRAFT MANUSCRIPTS 
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Staton, B. A., Catalano, M. J., Farmer, T. M., Abebe, A. and Dobson, F. S. 2017. Development and 
evaluation of a migration timing forecast model for Kuskokwim River Chinook salmon. Fisheries 
Research 194: 9-21. 

Appendix B:  

Staton, B. A. and Catalano, M. J.  Under review. Bayesian information updating procedures for Pacific 
salmon run size indicators: evaluation in the presence and absence of auxiliary migration timing 
information. Canadian Journal of Fisheries and Aquatic Sciences.  Decision: major revision.  
Submitted revised manuscript on 7/31/2018. 
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A B S T R A C T

Annual variation in adult salmon migration timing makes the interpretation of in-season assessment data
difficult, leading to much in-season uncertainty in run size. We developed and evaluated a run timing forecast
model for the Kuskokwim River Chinook salmon stock, located in western Alaska, intended to aid in reducing
this source of uncertainty. An objective and adaptive approach (using model-averaging and a sliding window
algorithm to select predictive time periods, both calibrated annually) was adopted to deal with multidimensional
selection of four climatic variables and was based entirely on predictive performance. Forecast cross-validation
was used to evaluate the performance of three forecasting approaches: the null (i.e., intercept only) model, the
single model with the lowest mean absolute error, and a model-averaged forecast across 16 nested linear models.
As of 2016, the null model had the lowest mean absolute error (2.64 days), although the model-averaged
forecast performed as well or better than the null model in the majority of retrospective years. The model-
averaged forecast had a consistent mean absolute error regardless of the type of year (i.e., average or extreme
early/late) the forecast was made for, which was not true of the null model. The availability of the run timing
forecast was not found to increase overall accuracy of in-season run assessments in relation to the null model, but
was found to substantially increase the precision of these assessments, particularly early in the season.

1. Introduction

In-season management strategies for Pacific salmon Oncorhynchus
spp. fisheries rely heavily on indices of in-river abundance (e.g., test
fisheries, sonar counts, etc.) to inform harvest control rules that attempt
to attain the balance of meeting pre-determined escapement objectives
while allowing adequate opportunity for harvest (Catalano and Jones,
2014). However, because indices of abundance are confounded by the
phenology (i.e., timing) of the migration, their interpretation is very
difficult in-season. For example, smaller-than-average index values
early in the season could be due to either a small run with average
timing or by a late large run, when interpreted in the context of
historical years (Adkison and Cunningham, 2015). This ultimately leads
to great uncertainty about how much of the incoming run has passed,
which is a key piece of information that dictates fishery harvest
opportunities. There exists no information in the current year’s
abundance index to inform the manager if (for example) 25% or 75%
of the run has passed on any given day. Yet, depending which is true,

the optimal management decision could be vastly different. Thus, in-
season assessment typically involves some characterization of the
variation in historical run timing to formulate a range of possible run
size scenarios that could be representative of the current year’s run size.
However, given the amount of variation in historical run timing, these
scenarios are rarely informative during the majority of the migration,
when key harvest decisions are being made because the run scenarios
may span all possible run sizes. As a result, the pre-season run size
forecast remains the most precise piece of information for much of the
season. If it were possible to predict the timing of the incoming run
(e.g., earlier- or later-than-average) with some level of confidence, it
could prove valuable for in-season assessment and decision-making by
reducing uncertainty in run size predictions.

While previous research has uncovered several key physiological
mechanisms that are involved with natal homing (Hasler and Scholz,
1983) and return migrations of adult salmon to freshwater environ-
ments (Cooperman et al., 2010; Cook et al., 2008; Hinch et al., 2012),
the exact physiological and behavioral responses of adult salmon to
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relatively small-scale environmental gradients within estuaries, which
are likely the ultimate determinants of freshwater entry timing, are still
poorly understood. Despite this uncertainty, several hypotheses have
been put forth that are broadly consistent with the observed timing
patterns of several species across a large geographic area (i.e., western
and southwestern Alaska). Two primary influences have been sug-
gested: genetic (Quinn et al., 2000; Anderson and Beer, 2009; O’Malley
et al., 2010) and environmental (Hodgson et al., 2006; Keefer et al.,
2008) mechanisms. Substantial evidence exists to suggest that both
genetic and environmental controls are involved in determining
migration timing, however it is broadly thought that genetic variation
influences sub-stock variation (i.e., different tributary spawning groups
within the same major river basin) and environmental variation
influences the timing of the aggregate (i.e., basin-wide) run (Keefer
et al., 2008; Anderson and Beer, 2009). This is consistent with the
notion that genetically distinct components of the aggregate run behave
differently as a result of their life history strategies and/or the
characteristics of their specific spawning grounds (e.g., sub-stocks that
must travel farther in-river to reach spawning grounds enter freshwater
earlier [Clark et al., 2015]; sub-stocks that spawn in tributaries
influenced by warmer lakes enable later spawning; [Burger et al.,
1985]) but that certain environmental conditions act on the aggregate
run to either hasten or delay freshwater entry. It has also been
suggested that run size may have an influence on migration timing,
although empirical support for this claim seems to be lacking. If there
were indeed relationships between run timing and run size, these need
to be quantified as certain combinations are particularly troublesome
for managers (e.g., small/early runs and large/late runs appear the
same early in-season; Adkison and Cunningham, 2015).

At the aggregate population scale, which is the focus of this paper, it
has been observed that migrations occurring in the spring and summer
generally occur earlier in years with warmer spring temperatures
(Mundy and Evenson, 2011; Hodgson et al., 2006). Mundy and
Evenson (2011) suggested that this pattern may be explained by the
stability of the estuarine water column where adult salmon stage in
preparation for riverine entry (or alternatively, marine exit). High
estuarine water column stability was hypothesized to impede riverine
entry through two mechanisms: (1) by presenting an osmotic barrier
between freshwater riverine discharge and the saline ocean water
which prevents osmotically incompetent individuals from crossing
and (2) by preventing freshwater competent individuals from receiving
olfactory cues essential to the homeward migration. Thus, Mundy and
Evenson (2011) hypothesized that years in which the estuarine water
column is stable over a longer period of time would be associated with
later migration timing. Although water column stability is a difficult
variable to measure over large spatial scales, several variables that are
known to influence it are available at large scales via remote sensing
(e.g., satellite observations). Such variables are sea ice cover which
prevents wind-driven mixing, associated local temperature-related
variables like land-based air temperature or sea surface temperature
(SST), and broader scale indicators such as the Pacific Decadal
Oscillation (PDO), an index of temperature anomalies in the northern
Pacific Ocean. Observational studies across the North American range
of Chinook salmon have found environmental-run timing correlations
that are consistent with this hypothesis (Hodgson et al., 2006; Keefer
et al., 2008; Mundy and Evenson, 2011). Even if the water column
stability hypothesis is incorrect, observed patterns suggest that envir-
onmental variables may be used to forecast run timing with some level
of accuracy and certainty.

Several efforts have been made at exploiting these environmental-
run timing relationships to develop run timing forecast models for
Pacific salmon migrations. Mundy and Evenson (2011) developed a
model for Yukon River Chinook salmon (O. tshawytscha) that used air
temperature, sea surface temperature, and ice cover to predict the day
at which the 15th and 50th percentiles of the run passed a test fishery
index location. Model predictions fit the observed data well (nearly

always within seven days, usually within three days), although out-of-
sample predictive ability was not presented (Mundy and Evenson,
2011). Keefer et al. (2008) developed a similar framework for Columbia
River spring run Chinook salmon and found run timing relationships
with river discharge, river temperature, and ocean condition indices
(e.g., PDO). Their best model explained 49% of the variation in median
run timing with variation in the environmental variables. Anderson and
Beer (2009) continued this work on the Columbia River spring Chinook
stock, but added genetic components to their analysis based on the
arrival timing of precocious males. Their findings revealed that both
environmental variables and changes in abundance of genetically
distinct populations, which had their own distinct migration timing,
affected overall run timing of the spring Chinook salmon run in the
Columbia River. These advancements have shown that relationships
between migration timing and environmental variables exist and may
have utility for use in forecasting efforts.

The Kuskokwim River, located in western Alaska, is the second
largest river system in the state and supports culturally and economic-
ally important Chinook salmon fisheries. Chinook salmon return
beginning in late May and continue through early August, with the
median date of passage occurring between June 14th and July 2nd.
Fisheries within the region harvest salmon in-river during freshwater
migrations using primarily drift gillnet gear. The Kuskokwim River
salmon fishery has a distinct cultural importance: nearly all inhabitants
are native Alaskans belonging to the Yup’ik group and take salmon for
subsistence purposes (Linderman and Bergstrom, 2009). While com-
mercial salmon fisheries operate within the river, these fishers often
also participate in subsistence take and revenues from the sale of
commercially-harvested salmon often contribute directly to participa-
tion in subsistence activities (Wolfe and Spaeder, 2009). To ensure
long-term sustainable harvest, the Chinook salmon fishery is managed
with a drainage-wide escapement goal derived from an age-structured
state-space spawner-recruit analysis (Hamazaki et al., 2012; Staton
et al., 2017). To meet these pre-determined escapement goals, in-season
management strategies implement time, gear, and area closures based
on limited and imprecise information regarding annual run size. The
distant locations of the majority of escapement assessment projects
makes direct measurement of escapement performance unavailable
until late in the season. Thus, the primary sources of run size assessment
information are (1) a pre-season run size forecast range (previous year’s
run size estimate ± approximately 20%) and (2) an in-river drift gillnet
test fishery operated in Bethel, AK which has been implemented using
consistent methods since 1984. The interpretation of this test fishery
index suffers from the same issue of being confounded by run timing
described earlier, making management decisions difficult. Without
precise in-season indicators of run size, managers must often choose
to either (1) trust a pre-season run size forecast for the majority of the
season or (2) take their chances at deciding if the run is early or late
when interpreting in-season data. Both options could lead to the wrong
interpretation of the actual run size, which could have serious
consequences for the management of the fishery (i.e., the unwarranted
opening or closing the fishery resulting in severe under- or over-
escapement). No published run timing forecast models currently exist
for Kuskokwim River Chinook salmon but given the potential utility of
independent run timing estimates for interpretation of in-season data,
the development and evaluation of such a model is needed. The
necessity of more accurate and precise in-season perceptions of run
size is particularly evident in years with anticipated low runs, such as in
recent years (i.e., since 2010), as this may allow managers to more
effectively guard against over-exploitation while still allowing for
limited harvest opportunities to support the cultural and subsistence
needs of the region.

We present an analysis that develops and evaluates the performance
of a run timing forecast model for Kuskokwim River Chinook salmon.
The objectives were to (1) quantify historical run timing, (2) develop a
run timing forecast model using environmental variables selected based
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on out-of-sample predictive performance, (3) assess the utility of the
forecasting model for improving predictions of end-of-season test
fishery indices of run size, and (4) determine if there is a relationship
between run size and run timing for the Kuskokwim River Chinook
salmon stock.

2. Methods

2.1. Estimates of migration timing

In this analysis, the forecasted quantity that represented migration
timing was the day at which 50% of the run passed an index location
(hereafter, D50). To inform this quantity for each year in the analysis,
we used daily catch-per-unit-effort (CPUE) data from the Bethel Test
Fishery (BTF) operated by the Alaska Department of Fish and Game
(ADFG), which spans 1984–2016. The raw data were daily CPUE
beginning on 1 June and ending 24 August each year. The cumulative
sum of these daily CPUE values within a year follows a sigmoidal
pattern reflecting the shape of the incoming salmon run which is
characterized by relatively few early migrants, a peak where the
majority of the fish are running, and relatively few late migrants. To
estimate the median day of passage as a continuous variable, a logistic
model was fitted to the cumulative proportion of daily CPUE of the
form:

p
e

= 1
1+ h d Dd,t - ( - )t t50, (1)

where pd,t is the predicted cumulative proportion on day of the year d in
calendar year t, ht is the parameter that controls the steepness of the
curve (i.e., duration of the run), and D50,t is the day at which 50% of the
total annual CPUE was caught in year t. Annual estimates of D50 and h
were obtained by fitting pd,t to observed daily cumulative proportion by
minimizing the sum of squared deviations from the model. Uncertainty
in these parameter estimates was not further considered in the analysis
as the uncertainty was negligible. Further, by using the BTF daily values
to infer the location and shape of year-specific logistic timing curves,
we made the assumption that these data provided an accurate
representation of daily run strength within a year (influence of weather
conditions or harvest on sampling was negligible).

2.2. Environmental variables

Environmental variables to be assessed for forecasting performance
were chosen based on (1) previously established association with
salmon run timing, (2) availability for the Kuskokwim River during
the years for which BTF index observations exist (1984–2016), and (3)
availability for use in a pre-season forecast model (i.e., available no
later than June 10th in the year for which the forecasted value would be
used). Based on these criteria, four environmental variables were
chosen for analysis: SST, percent sea ice cover (SIC), PDO, and land-
based air temperature taken in Bethel, AK.

2.2.1. PDO data
Data collected for the PDO variable came from one of several indices

Fig. 1. Map of Kuskokwim Bay where Chinook salmon likely stage for transition to freshwater. Shows grid cells from which daily SST values were used. Daily SIC values came from the
same grid cells, though excluding grid cell 45 below due to missing values.
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produced by the National Oceanic and Atmospheric Administration
(NOAA) (Mantua et al., 1997; values available at http://research.jisao.
washington.edu/pdo/PDO.latest.txt). The index is produced by taking
the first principal component of monthly SST anomalies in the northern
Pacific Ocean, after removing any global trends due to any systematic
change over time (Mantua et al., 1997). Thus, for each year of the data
set, a single monthly value was available for PDO. In the selection of
relevant time periods (Section 2.3), we considered monthly PDO values
from January to June of each year, as previous studies have found PDO
values prior to the initiation of the run have predictive value for
Chinook salmon populations (Beer, 2007; Keefer et al., 2008).

2.2.2. Bethel air temperature data
Air temperature data for Bethel, AK were accessed from the Alaska

Climate Research Center webpage (http://akclimate.org/acis_data).
These data were available as daily means for each day of each year in
the 1984–2016 data set. Daily air temperature values from the start of
January to mid-June of each year were considered in the selection
procedures.

2.2.3. SST and SIC
SST and SIC data were accessed from the NOAA Optimum

Interpolation SST V2 High Resolution Dataset (Reynolds et al., 2007;
available at: http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.
oisst.v2.highres.html). These data were available as daily means for
any 0.25° by 0.25° latitude by longitude grid cell on the globe. To limit
the search, only grid cells within Kuskokwim Bay were selected for
analysis (Fig. 1) as that is the area that Chinook salmon bound for the
Kuskokwim River likely aggregate prior to riverine entry. The area with
grid cells ranged from 58.5° N to 60° N by 164.25° W to 162° W, which
resulted in a total of 54 0.25° latitude by 0.25° longitude grid cells. For
SST, four grid cells fell partially over land (resulting in 50 grid cells
with daily data) and for SIC, five grid cells were partially over land (49
grid cells with daily data). “Empty” grid cells were excluded and the
remaining grid cells were used for prediction. Previous analyses have
used a simple average over a wide spatial area (e.g., Mundy and
Evenson, 2011) to create a single value for SST or SIC each year.
However, this is somewhat arbitrary and does not account for the
possibility of certain areas having stronger timing signals than others or
that these areas with stronger signals may change over time. Thus, the
gridded spatial structure of these variables was retained and the
treatment of this structure in the forecast analysis is discussed below
in Section 2.4. Because of the time-intensive nature of the selection
procedure described in Section 2.3, considered time periods for gridded
variables were shortened based on preliminary correlation analyses
showing excluded times had little or no correlation with D50. Daily
means for SST from mid-April to mid-June and SIC from mid-February
to mid-May in each year were considered in the predictive variable
selection techniques.

2.3. Selection of predictive time periods

Climatic variables are frequently associated with biological quan-
tities for the purpose of prediction, however, oftentimes the average
over an arbitrary time period, such as daily values in the month of
February, is used based on a priori assumptions of the behavior of
important factors (van de Pol et al., 2016). While this approach is
simple to implement and explain, it is possible that a better time
window (i.e., reliably more accurate) exists but is not considered.
Furthermore, the importance of various time windows may change over
time and the arbitrary selection of a single window does not allow for
such changes to be detected. To avoid these issues, a rigorous temporal
selection process, known as the sliding window algorithm (van de Pol
et al., 2016), was implemented to determine the best predictive time
period for each variable considered in the forecast model. To find the
most reliable temporal window for prediction, this method evaluates all

possible windows (subject to certain restrictions) over which to average
for use in the forecast model. As input constraints, the sliding window
algorithm used in this analysis required: (1) the start date of the first
window to be evaluated, (2) the end date of the last window to be
evaluated, and (3) the minimum size of a candidate window. It then
proceeded to evaluate all possible combinations of window averages
(using only consecutive days). For example, if the start date of the first
possible window was set to 1 May, the minimum window size was set to
five days, and the end date of the last possible window was set to 30
May, the window algorithm would start by averaging the daily values
between 1 May and 5 May for each year separately and would evaluate
the predictive performance of that variable using forecast cross-valida-
tion (described below). Next, the algorithm would begin to increase the
window size by one day on each iteration, averaging daily values and
evaluating the predictive performance for 1 May to 6 May, then 1
May–7 May, and so on, until it reached the largest window starting with
1 May (which would be 1 May–30 May). Following completion of all
windows starting with 1 May, the algorithm would proceed to evaluate
all possible windows starting with 2 May, then 3 May, and so on, until it
reached windows starting with 26 May. At this point, there would only
be one window to be evaluated, since the minimum number of days to
include in a candidate window was set at five days. In the analysis, five
days was used as the minimum window size for all variables except
PDO (which had monthly values), in which case the minimum window
size was set such that a single month could constitute a window.
Example R code for how the sliding window algorithm was implemen-
ted is provided in Appendix A in Supplementary material.

All windows were evaluated using a time series forecast cross-
validation procedure, which is an out-of-sample technique for data that
are collected through time (Arlot and Celisse, 2010). The procedure
operated by producing a forecasted value of D50 for year t+1 trained
based on all data available from years 1, …, t. It then continued for all
t= m,…, n-1, where m is the minimum number of years necessary to fit
the model (set at m= 10 in all cases) and n is the number of years of
available data. Then, absolute forecast error in D50 was calculated
based on all forecasted years as |yt+1 -ŷt+1 |, and yearly forecast errors
were averaged to obtain mean absolute error (AE) which was used as
the measure of model performance in window selection. The window
with the lowest AE was selected as the optimal window to average over
for prediction. The forecasting cross-validation procedure was used as
opposed to other out-of-sample validation procedures, such as k-fold or
leave-one-out methods, because the data were collected through time
and it does not make sense for the model to need to predict (for
example) year 2010 from years 1984–2009 and 2011–2016, but rather
it would always need to predict year t+1 from all previously-collected
data. Example R code for how the forecast cross-validation was
conducted is provided in Appendix A in Supplementary material.

Although a recent R package has been released to conduct sliding
climate window analyses (“climwin”; Bailey and van de Pol, 2015), the
package can currently only assess candidate windows using Akiake’s
Information Criterion (AIC) or k-fold cross-validation. Because the more
specialized forecasting cross-validation technique was required for this
analysis, custom R code was written to select the optimal window for
each variable (Appendix A in Supplementary material).

When forecasting D50,t+1 from training data from 1, …, t, a single
optimal climate window was selected for each variable and that
window was used to estimate coefficients based on training data and
obtain the environmental variable value for prediction in year t+1 to
forecast D50,t+1. When a new year of data was added to the training
data (such as in the retrospective forecast analysis; Section 2.7), the
optimal window for each variable was re-assessed using the algorithm
again. For PDO and Bethel air temperature, which had no spatial
structure, the sliding window algorithm was used to select the range of
monthly (PDO) or daily (Bethel air temperature) values to include in
the predictive climate window for each year in the analysis. For SST and
SIC which contained a series of 50 and 49 grid cells, respectively, each
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with unique daily values, the sliding window algorithm was used on
each grid cell separately. The result was 50 unique grid cell-specific
windows for SST and 49 windows for SIC for each year of the analysis.
The treatment of this spatial structure in the forecast analysis is
discussed below in Section 2.4.

2.4. Evaluated forecast models

Linear regression was used to assess the forecast performance of
each of the variables described above, both in isolation of and in
combination with other variables. All possible subsets were evaluated
(excluding interactive effects) for predictive ability through time,
resulting in a total of 16 models ranging from the null (i.e., intercept
only) model to the full (i.e., global) model (all four variables as additive
predictors).

For the spatially explicit variables (i.e., SST and SIC), a more
complex treatment was required to prevent all grid cell values from
being used as predictors in a single model. To handle the spatial
structure, grid cell-specific regression models were fitted, then model-
averaging based on AIC was used to obtain a single forecast D50 for each
year (Burnham and Anderson, 2002). Under this approach, each grid
cell g received an AICc score:

n σ K K K
n K

AIC = log( ˆ )+2 + 2 ( +1)
- -1

,g gc,
2

(2)

where n is the number of data points used in each model, σ̂g is the
estimate of the residual standard deviation under grid g, and K is the
number of model parameters. The corrected version of AIC (AICc) is
recommended in cases where the ratio of n to K is small (Burnham and
Anderson, 2002). Then, each grid cell received a ΔAICc score, repre-
senting its relative performance in comparison to the best grid cell:

Δ =AIC -AIC ,g gc, c, min (3)

where AICc,min is the minimum AICc across all grid cells. Model weights
were then calculated as:
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Grid cell-averaged predictions were then obtained as:

∑y w yˆ = ˆ ,t
g

G

g g t+1 , +1
(5)

where ŷg t, +1 is the forecasted D50 for grid cell g, and G is the number of
grid cells.

2.5. Forecast uncertainty

In addition to forecast accuracy, forecast precision is also of great
importance. For models that did not require AICc model-averaging
across grid cells, the following equation was used to produce a forecast
standard error (SE):
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n
i
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2
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where n is the number of years the model was fit to, x is the value of the
predictor variable used for forecasting, and x is the mean of all
predictor values excluding the new value used for forecasting. For
models that used AICc model-averaging (i.e., those including SST and
SIC), the following equation was used to produce prediction SE:

∑ w y ySE = SE +( ˆ - ˆ ) ,
g

G

g g g t t
2

, +1 +1
2

(7)

where SEg is the prediction SE from grid cell g, calculated using Eq. (6).
This estimator of unconditional sampling standard error accounts for

uncertainty within each model and the uncertainty due to model
selection (Burnham and Anderson, 2002). Prediction intervals were
calculated using the point estimate of prediction, the prediction SE, and
appropriate quantiles from the corresponding t distribution.

2.6. Forecast model selection

Given 16 forecast models, it is impossible to know which will
perform the best at forecasting for the current year. Thus, three
methods to obtain a forecast for D50 were evaluated: (1) the null (i.e.,
intercept only) model, (2) the single model with the lowest forecast
cross-validation score as of the last year, and (3) model-averaging
across the ensemble of 16 forecast models based on AICc scores.
According to Burnham and Anderson (2002), model-averaging should
perform better than a single “best model” at prediction when there is a
high degree of uncertainty about which model is best. This procedure
was performed using Eqs. (2)–(5), by substituting the prediction,
prediction SE, and K for forecast model i, in place of grid g. Prediction
intervals based on model-averaged predictions and prediction SE
present somewhat of a problem when the different models contributing
to the average contain differing degrees of freedom as it is unclear how
many standard errors the prediction limits should lie from the mean
prediction. Thus, the estimator suggested by Burnham and Anderson
(2002) of the “adjusted SE” (ASE) was used:

⎛
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where tdfi,1-α/2 is the 1–α/2 quantile of the t distribution with degrees of
freedom equal to that of model i and z1-α/2 is the corresponding quantile
of the z (i.e., standard normal) distribution. The level α= 0.05 was
used in all cases.

2.7. Retrospective forecast analysis

The analysis was conducted in a retrospective forecast framework
starting in 1994. All data after 1994 were ignored, optimal windows
were selected for each of the four variables (and all grids for SST and
SIC), all 16 models were fitted, a D50 forecast was made for 1995 using
the three approaches described in Section 2.6, and each was evaluated
for predictive accuracy. This process was repeated annually until the
present (i.e., out-of-sample predictions made for 1995–2016), which
allowed for the calculation of AE through time as if the forecast model
would have been available beginning in spring 1995. In addition to AE,
median absolute error (AE) was calculated to validate prediction
accuracy of estimates by ignoring the effect of outlying poor predic-
tions.

2.8. Value of forecast to run size assessments

It is important to remember that the purpose of producing a run
timing forecast is to aid in the interpretation of in-season indices of run
size such as test fisheries. To evaluate the utility of having access to the
run timing forecast model, the accuracy and precision of end-of-season
cumulative CPUE (EOS) predictions were compared using D50 forecasts
from the model-averaged and the null forecast models. In-season
perceptions of run size were produced by predicting EOS:

EOS
p

ˆ =
CCPUE

ˆ
,d t i

d t

d t i
, ,

,

, , (9)

where CCPUEd,t is the cumulative CPUE caught at the BTF through day
d in forecasting year t, p̂d t i, , is the predicted cumulative proportion of the
run that had passed the BTF location on day d in year t from model i
(i.e., model-averaged or null forecast model) obtained by inserting the
forecasted value of D50 into the logistic function Eq. (1). Uncertainty in
the run timing forecast model was propagated to EOSd,t,i using the delta
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method (Bolker, 2008). As the parameter h is also unknown in-season,
the mean of all historical ht was used as the point estimate, and the
variance and correlation with D50,t was included in the covariance
matrix supplied to the delta method. Accuracy was assessed using
proportional bias [(EOSd t i, , − EOSt)/EOSt] and precision was assessed
using the SE of EOS on day d, both compared between the null and the
model-averaged forecast model. Accuracy and precision of EOS predic-
tions were assessed on 15 June, 30 June, 15 July, and 30 July each
year. Using the null model to obtain p̂d is essentially equivalent to what
is currently done for predicting EOS index of run size in the Kuskokwim
River (i.e., in the absence of an environmental variable forecast model
for D50).

2.9. Investigation of a run timing versus run size relationship

To test the hypothesis that run timing is related to run size (e.g.,
small runs are typically early, or vice versa), two models were
investigated for their predictive performance using the forecast cross-
validation criterion: the null model and a model that included run size
as a predictive covariate in place of the environmental variables. Run
size was obtained from a maximum likelihood run reconstruction model
that compiles all assessment information (i.e., 20 escapement count
indices, harvest estimates, drainage-wide mark-recapture estimates,
etc.) to estimate the run size that makes the collected data most likely
to have been observed (Bue et al., 2012). The forecast absolute errors in
each year were then compared using a two-tailed paired t-test using
α = 0.05.

3. Results

3.1. Estimates of run timing

The logistic curve fit the daily cumulative CPUE proportions well in
all years of the BTF data set (Table 1), as indicated by an average
residual standard error estimate of 0.022, with a maximum estimate of
0.038 in 1992. The majority (95%) of all residuals from all years fell
between −0.056 and 0.044. Parameter estimates were quite precise,
with D50 having a smaller average coefficient of variation (CV) than h,
(0.07% and 2.09%, respectively). Given this small degree of parameter
uncertainty, it was ignored throughout the rest of the analysis.

3.2. Variable-specific relationships

Looking at each of the environmental variables in isolation of all
others, it is clear that there is a distinct relationship between tempera-
ture-related environmental variables and Kuskokwim River Chinook
salmon migration timing (Fig. 2). For illustration purposes, the figures
for the two gridded variables (SST and SIC) were produced by taking an
average across all grid cells weighted by the AIC weight for each grid
cell. Air temperature, PDO, and SST all had negative relationships with
D50, whereas SIC had a positive relationship (Table 2).

3.3. Selected climate windows

It was difficult to generalize on the climate windows selected for
each variable based on forecast cross-validation performance, because
the selected windows changed with each new year of data and SST and
SIC had windows for each grid cell; however, some noteworthy patterns
arose. First, the best window for PDO was consistently the value for the
month of May for each year the forecasts were produced (not shown).
Second, selected windows for air temperature fluctuated from year to
year to some extent, but long windows were consistently selected for all
years after 1999, and generally spanned early February to late May
(Fig. 3a). Third, selected windows through time were substantially
more variable for most grid cells for SST and SIC, although many grid
cells remained relatively constant or became more “focused” as more

years of data were added (Figs. 3b1-4, c1-4). In general, chosen
windows for SST began in early to mid-May and ended in late May or
early June (Fig. 3b1-4) whereas windows starting in early April and
ending in mid to late April were predominately chosen for SIC (Fig. 3c1-
4). The selected climate windows in southern-most grid cells appeared
more stable for SST (Fig. 3 panels b3 and b4), whereas climate windows
in northern grid cells appeared more stable for SIC (Fig. 3 panels c1 and
c2; stable in the sense that the optimal windows changed less as new
years were added to the training data).

3.4. Forecast performance

Of the three investigated forecasting methods (null model, model
with lowest forecast cross-validation error up to the forecasting year,
and AICc model-averaging), the null model had the lowest AE from
1995 to 2016 (2.64 days; Fig. 4). AICc model-averaging performed
better than using the single model with the lowest cross-validation
score (3.04 versus 3.34, respectively; Fig. 4). However, these patterns
were not consistent across the entire time series. For the period of
1996–2008, the model-averaged forecast had a lower AE than the null
model, and for the period of 2009–2015, the model-averaged forecast
had approximately the same or lower AE scores (Fig. 5). It was due in a
large part to 2016 that the model-averaged forecast had a slightly
higher AE than the null model. Each model in the ensemble of 16
models (except the null) predicted an extremely early run in 2016 when
in fact the observed run timing in 2016 was close to the historical
(1984–2015) average (Fig. 4). A similar case happened in 2015 (Fig. 4).
Expressing prediction error in terms of median absolute error (AE)
resulted in lower average errors (null = 2.08, single best = 2.56, and
model-averaged = 2.35), indicating that extreme prediction errors
(i.e., outliers) influenced the value of AE. However, the relative

Table 1
Parameter estimates (mean with standard error in parentheses) from logistic curves from
Eq. (1) fit to all years. D50 is expressed as day of the year; for reference, day 174 is June
22nd in a leap year and June 21st in a non-leap year.

Year D50 h

1984 174.80 (0.20) 0.15 (0.004)
1985 183.54 (0.11) 0.25 (0.006)
1986 173.19 (0.15) 0.21 (0.006)
1987 172.66 (0.12) 0.17 (0.003)
1988 172.14 (0.18) 0.16 (0.004)
1989 173.70 (0.10) 0.20 (0.004)
1990 175.86 (0.12) 0.17 (0.003)
1991 175.80 (0.10) 0.19 (0.003)
1992 173.29 (0.24) 0.15 (0.005)
1993 168.31 (0.07) 0.22 (0.003)
1994 169.80 (0.12) 0.19 (0.004)
1995 172.44 (0.07) 0.19 (0.002)
1996 166.27 (0.10) 0.21 (0.004)
1997 170.56 (0.13) 0.26 (0.008)
1998 175.07 (0.08) 0.20 (0.003)
1999 180.90 (0.19) 0.13 (0.003)
2000 171.53 (0.18) 0.17 (0.005)
2001 174.13 (0.13) 0.19 (0.004)
2002 169.99 (0.20) 0.17 (0.006)
2003 168.91 (0.16) 0.17 (0.004)
2004 173.98 (0.15) 0.17 (0.004)
2005 173.64 (0.15) 0.16 (0.004)
2006 175.43 (0.11) 0.19 (0.004)
2007 177.82 (0.08) 0.19 (0.003)
2008 176.05 (0.09) 0.19 (0.003)
2009 173.13 (0.07) 0.23 (0.003)
2010 173.14 (0.19) 0.19 (0.006)
2011 173.87 (0.09) 0.16 (0.002)
2012 178.50 (0.11) 0.22 (0.005)
2013 173.53 (0.11) 0.22 (0.005)
2014 166.56 (0.11) 0.17 (0.003)
2015 174.57 (0.18) 0.12 (0.002)
2016 174.13 (0.09) 0.12 (0.001)
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differences in prediction error between models were approximately the
same as for AE, indicating outliers affected the prediction error scores
for each model similarly. Additionally, by comparing the width of the
prediction intervals in Fig. 4 across forecasting approaches, it was clear
that model-averaging substantially reduced prediction uncertainty (SE)
in relation to the null and single best model approaches.

To compare performance in average versus extreme years among
forecasting approaches, AE was further calculated in a more specific
way: based on how similar or dissimilar the included years were to the
mean observed run timing across all years. As would be expected, the
null model performed well when only years with D50 within±1 days of
the average were in included in the calculation of AE (Fig. 6a), but its
accuracy became increasingly worse as years with more extreme
realized D50 values were included in the calculation (increasing x-axis
values in Fig. 6a). The two environmental variable forecast approaches
(model-averaging or the single “best” model in each year) performed
relatively equally well across this continuum and neither AE score was
sensitive to the overall similarity or dissimilarity the included years had
with average run timing (Fig. 6a). The lower panel shows the relative
frequency with which these various X scenarios occurred, indicating
how much information each scenario contributed to the overall AE. On

the other hand, the null model only performed as well as the model-
averaged forecast when years with D50± 0.5 days outside of the mean
were considered (Fig. 6b). As only more extreme years were considered
in AE (increasing x-axis values in Fig. 6b), the null model rapidly
performed worse and the model-averaged forecast remained relatively
insensitive to the degree of extremity (Fig. 6b).

3.5. Value to in-season run size assessments

When the model-averaged and null model forecasts for D50,t were
retrospectively used to aid in in-season run assessment based on daily
cumulative BTF CPUE, it was evident that the range of possibleEOSd t,
was substantially smaller when the model-averaged forecast was used
as opposed to the null forecast. This is evident by the average daily
standard errors of EOSˆ d t, on 15 June, 30 June, 15 July, and 30 July:
256.97, 62.23, 6.69, 0.59 for the model-averaged forecast model and
337.19, 72.63, 6.90, and 0.57 for the null forecast, respectively. The
reduction in the first two evaluated days is of key importance. In terms
of accuracy, however, the forecast model did not perform better at
informing EOS prediction than the null model. On the same days, the
average proportional bias [(estimate − observed)/observed] using the
model-averaged D50,t forecast was 0.152, 0.006, −0.024, −0.008 as
opposed to 0.145, −0.035, −0.027, and −0.008 under the null model
forecast. A visual example of two years is provided in Fig. 7. The upper
panels show EOSˆ d when the model-averaged and the null model
forecast models were used to inform the location of the logistic
cumulative timing curve in 2013 and 2014. The horizontal line shows
the observed EOS. 2013 is an example of when the null model would
have been preferable to use (in terms of accuracy) and 2014 shows a
case when the model-averaged forecast would have performed better.

3.6. Run timing versus run size relationship

There appeared to be no evidence to lend support for the hypothesis
that run timing and run size are related for the Kuskokwim River

Fig. 2. Relationships between the four single environmental variables and run timing (D50) using data from optimal climate windows when 2016 was added to the training data. For
illustration purposes only, gridded variables (SST and SIC) were combined by weighted averaging where the weight of each grid cell was assigned the AICc weight of that grid cell when
grid cell-specific models were fitted. Grey bands are 95% confidence intervals on the least squares line.

Table 2
Regression coefficient estimates and selected statistics from the single-variable regression
models shown in Fig. 2. Intercept and slope estimates are presented as mean (SE) and the
critical F1,31(α = 0.05) value in each test was 4.16. Significance codes are * p≤ 0.001
and ** p≤ 0.0001. Interpretation of the intercept and slope need special attention as the
x-variables have specific climate windows and some variables are measured on different
scales. Thus, strength of effects should be interpreted using tslope − values farther from
zero indicate a stronger positive or negative effect.

Variable Intercept Slope tslope R2 F

AIR 170.93 (0.94) −0.26 (0.08) −3.41 0.25 11.62*
PDO 174.79 (0.63) −1.89 (0.52) −3.63 0.28 13.17*
SST 179.33 (1.34) −1.71 (0.37) −4.65 0.39 21.60**
SIC 169.85 (0.99) 12.15 (2.78) 4.36 0.36 19.05**
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Chinook salmon stock. On average, run timing occurred 0.01 (95% CL;
−0.03–0.004) days earlier for each 1000 fish increase in run size,
which was not significantly different than no effect of run size on run
timing (p= 0.153, R2 = 0.07). Additionally, based on forecast cross-
validation, the model that included run size did not perform better at
prediction than the null model. On average, the null model resulted in
an estimated absolute forecast error of 0.2 (95% CL; −1.07–0.68) days
less than the run size model (p = 0.64).

4. Discussion

The environmental relationships with run timing we detected for
the Kuskokwim River Chinook salmon stock are consistent with
patterns found elsewhere in the region (e.g., Mundy and Evenson,
2011; Hodgson et al., 2006). Specifically, we found that warmer years
were typically associated with earlier-than-average runs as were years
with less than average SIC. These findings are consistent with the water
column stability hypothesis suggested by Mundy and Evenson (2011).
The amount of unexplained variation in the Kuskokwim model appears
to be comparable between the Yukon River Chinook salmon stock as
well (Mundy and Evenson, 2011). Using the relationships shown in
Fig. 3, the correlation with D50 was −0.52, −0.64, and 0.62 for air
temperature, SST, and SIC, respectively. For the Yukon River Chinook
salmon stock, Mundy and Evenson (2011) found correlations of −0.59,
−0.72, and 0.66 for the same variables but measured at different
spatial and temporal scales and with approximately 10 more years of
data included (Table 2 in Mundy and Evenson, 2011). These similar
correlations indicate the signals given by environmental variables are of
relatively equal strength between these two systems. Given these
similarities, future research applying our framework to Yukon River

Chinook salmon (and other stocks) may enhance the applicability of our
approach, if it could be shown that doing so would improve the
accuracy of run timing predictions over other methods.

Given the overall strength of the environmental relationships, it is
somewhat surprising that the null model forecast performed better on
average than did the model-averaged forecast. This could, potentially,
be due to the fact that a variety of biological (size (Bromaghin, 2005)
and morphology (Hamon et al., 2000)) and abiotic factors (temperature
(Salinger and Anderson, 2006), river discharge (Keefer et al., 2004),
and migration distance (Eiler et al., 2015)) may affect migration rate
(and subsequently, encounter probability) and catchability, introducing
additional variability in our run timing estimates. Future research that
accounts for these effects on encounter probability or catchability could
offer improved predictions of run timing. Regardless of the underlying
drivers, the overall prevalence of years with average run timing likely
led to the enhanced performance of the null model. It is not surprising,
however, that the model-averaged forecast performed better than the
supposedly single “best” model. This finding is consistent with the
literature on model-averaging predictions (Burnham and Anderson,
2002). Although the null model performed better in the long-term
average (i.e., lower AE as of 2016), there are reasons a manager may
still justifiably prefer the model-averaged forecast. First, the difference
in AE between the model-averaged forecast and the null model was
0.4 days, which is small relative to the amount of annual variation in
run timing (a 17 day range for D50 over 33 years). Second, the model-
averaged forecast performed equally well in terms of forecast accuracy
regardless of the type of run timing it was used to forecast (i.e.,
prediction error equal in extreme early/late and average years; Fig. 6b).
In contrast, the null model only performed comparably well in years
with run timing within ± 3 days from average and error increased

Fig. 3. Changes in selected climate windows as training data were added in the retrospective forecasting analysis. Bottom and top lines show the first and last day of the selected climate
window, respectively, as more years were added. The year axis corresponds to the selected window after including environmental and run timing data from that year in the training data.
e.g., the windows shown for 2015 were used to produce the forecast for 2016. Panel (a) is Bethel air temperature, panels b1–b4 are SST windows for four sample grid cells and panels
c1–c4 are SIC windows for the same four sample grid cells. Sample grid cells from Fig. 1 shown for SST and SIC are as follows: grid cell 8 (b1, c1), grid cell 44 (b2, c2), grid cell 12 (b3, c3),
and grid cell 48 (b4, c4). Selected windows for PDO are not shown because the single month of May was selected in all years.
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Fig. 4. Produced forecasts under the three approaches. Black points/lines are the time series of D50 detected by the BTF. Grey points are out-of-sample forecasts with 95% prediction
intervals shown as error bars. AE and AE are the mean and median absolute forecast errors from 1995-2016, respectively.

Fig. 5. Evolution of mean (AE) and median (AE) absolute forecast error under the three investigated forecasting approaches. Each point is the average of absolute errors of all years
before and including the corresponding year on the x-axis, starting in 1995.
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Fig. 6. Mean absolute error (AE) under three forecast approaches calculated by either (a) including years with a D50 value within±X days of the all-year average or (b) including years
with a D50 value outside±X days of average, where X is the number of days indicated on the x-axis. Bottom panels show the number of observed years in which the appropriate±X days
criterion was met. Shaded regions in the hypothetical distributions show the types of D50 values that were included in the calculation of AE. One point that may enrich inference from this
figure (and is shown in the shaded normal distributions) is that panel (a) becomes more inclusive from left to right by adding years that are more dissimilar to the average in the
calculation of AE whereas panel (b) becomes more exclusive from left to right by removing years that are similar to the average.

Fig. 7. In-season predictions of end of season cumulative BTF CPUE under the model-averaged forecast using environmental variables and the forecast under the null model in 2013 and
2014. Intended to illustrate cases in which a manager would benefit from having access to the model-averaged run timing forecast model using environmental variables (2014) and when
the null model would have performed better (2013). Horizontal lines are the true end of season cumulative BTF CPUE, dark grey regions are 50% confidence intervals, and light grey
regions are 95% confidence intervals. Grey vertical lines indicate the period when key harvest decisions are made.

B.A. Staton et al. Fisheries Research 194 (2017) 9–21

18



precipitously in more extreme years. Third, the 95% prediction inter-
vals from the null model seemed too wide as 100% of the observations
fell within the intervals, whereas 92% of the observations fell within
the prediction intervals from the model-averaged forecast (which is
closer to the ideal coverage, i.e., 95%). Prediction uncertainty was
lower under the model-averaged forecast than the null model, which
would ultimately lead to fewer run timing scenarios being considered to
explain the observed in-season data (e.g., the earliest or latest scenarios
could be excluded earlier in the season) leading to more certain
interpretation of in-season indices of run size.

As for the value of having access to a run timing forecast to in-
season run size assessments, our findings showed that on average it is
preferable to use the environmental forecast over the null forecast. It
should be emphasized that we did not evaluate the ability to assess
actual run size, only an index of run size (EOS). Though because EOS
can be expressed as a function of actual run size (and vice versa), more
precise predictions of EOS should presumably result in more precise
predictions of actual run size. In terms of prediction error, both
approaches led to positive average biases on 15 June (14–15%,
model-averaged 1% higher than null model). By 30 June, the bias
was reduced to less than 5% and only decreased beyond that for both
models. These biases are likely the result of asymmetry in the timing
curve detected by the BTF. However, the key difference between
approaches was the reduced uncertainty in EOS predictions when using
the model-averaged forecast due to the exclusion of extreme early or
late runs which lead to extreme low and high EOS predictions early in
the season. The null model was forced to always consider these
scenarios, resulting in greater uncertainty in EOS predictions, particu-
larly between 15 June and 30 June when key management decisions
are made. Due to the large amount of uncertainty under the null model
(which is essentially the currently-used method), EOS predictions go
largely ignored for much of the season and the pre-season run size
forecast is trusted instead. If the environmental variable forecast model
were to be used, it likely would provide managers with more informa-
tion when making decisions.

The sliding window algorithm was an objective, adaptive, and data-
driven tool for temporal selection of environmental predictors and
therefore may be more appropriate than choosing a time window based
on a priori assumptions, particularly in forecasting applications. The
algorithm relied on the data and predictive performance to select the
window used for the next year’s forecast. This framework allowed for
predictor variables to change adaptively as a more accurate window
became apparent. This quality of the sliding window algorithm makes it
intuitive and potentially preferable in the face of a changing climate.
However, the algorithm was computationally intensive. The R code to
select windows for all variables/grids for the retrospective forecasting
procedure took approximately 1.5 d to complete on a desktop computer
with a 3.60 GHz processor with four cores and 32 GB of RAM. Each year
took approximately 3.5 h to complete (depending on the number of
years the forecast cross-validation procedure was conducted on). The
flexibility of the approach also hinders the ability to typify a year as
“warm” or “cold”, as these criteria may change when an additional year
of data is included and a new window is selected. An additional
drawback of the sliding window algorithm is that it may be difficult to
explain to managers and stakeholders, which may lead to confusion and
distrust in the method.

Model-averaging across grid cells for SST and SIC was also an
objective, adaptive, and data-driven, (though computationally-inten-
sive) solution for dealing with the spatial nature of predicting run
timing from these two variables. Of course, it would be possible to
average all daily values across grid cells each year and perform the
sliding window algorithm on these means. However, this would ignore
the fact that some grid cells inherently have a stronger timing signal
and would likely insert more variation into the predictive relationship.
Additionally, the model had the flexibility to place more weight on
different grid cells as more years of data were added, again adding to

the flexibility of our overall approach which may be preferable in the
face of a changing climate. However, the inherent complexity of
including the spatial structure again makes it more difficult to typify
a year as “warm” or “cold” as there are many values each year for SIC
and SST and the strength of the run timing signal given by each grid cell
varies.

These two complexities to our analysis (sliding window selection
and model-averaging across spatial grid cells) made the interpretation
of effect sizes and selected windows difficult in a biologically-mean-
ingful way because the best windows and spatial grid cells could change
from year to year. We generally see this flexibility based on predictive
performance as more important for this particular analysis than
biological inference on research topics like determining the most
influential variable on run timing variation or determining the migra-
tion route of Chinook salmon through Kuskokwim Bay. These examples
remain exciting research questions for the future, however our focus
was on the prediction of a single quantity, D50, which could aid in in-
season decision-making. A separate issue confounding biological inter-
pretation is that each variable had some direct or indirect link to
temperature, suggesting that there is strong potential for multicolli-
nearity among predictor variables. It is well known that correlated
predictor variables can result in biased coefficient estimates and
variance inflation (Neter et al., 1996). This was one reason coefficient
estimates were only presented in the single-predictor case (Table 2), as
we caution against their interpretation in this particular case. However,
our focus was entirely on predictive ability, which is generally thought
to be unaffected by multicollinearity (Graham, 2003).

An important caveat of our analysis is that we assumed a negligible
influence of downstream harvest on the BTF timing index. This
assumption was likely violated in some years but the magnitude of
the impact is unknown. From 2008–2015, the average exploitation rate
by only those villages downstream of the BTF index was 17% (versus
35% for villages across the whole drainage), thus there is the potential
for a downstream harvest bias on perceived run timing. Moderate to
high exploitation rates would not necessarily bias the BTF index if the
timing of the harvest was similar to the run. However, in the
Kuskokwim, subsistence harvest has historically focused on the early
portion of the run (Hamazaki, 2011). When coupled with moderate
exploitation rates (i.e., 17%), this early nature of the fishery is likely to
have resulted in detected timing curves that were biased late (due to
early fish being removed before they are sampled by the BTF) to some
unknown degree. Historical and future interpretation of the BTF is
further complicated by the operation of the fishery, such as a recent
regulatory measure which mandates that no directed Chinook fishery
may begin on or before 11 June. We suspect that the magnitude of the
bias in the index due to the timing of downstream harvest would be
small and would not likely affect the general conclusions of our analysis
(although residual variation in environmental-run timing relationships
would likely be lower if accounted for). We suggest that future studies
should attempt to develop methods that remove harvest effects from the
BTF index and other similar indices and assess the magnitude of
potential bias. Even if harvest bias could be removed from the index,
addressing bias in the test fishery index would be unfeasible during the
season because spatially and temporally explicit harvest data are often
unavailable until the season has concluded, and the data regarding the
temporal distribution are fragmentary.

It was unsurprising that no meaningful relationship exists between
estimated run size and run timing. Given that small/early and large/
late runs are problematic for in-season management (Adkison and
Cunningham, 2015), we see the lack of a relationship as beneficial to
the management effort. In other words, a small run is no more likely to
be early than it is to be late, and the same is true of large runs. For
managers, this means that although these small/early or large/late
scenarios have occurred in the past, they need not be particularly
worried about them due to an overwhelming prevalence over other run
size/run timing scenarios.
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There is evidence to suggest that, on a population demographic
scale, sub-stock structure and relative stock composition may influence
the run timing of the aggregate. For example, Clark et al. (2015)
showed that Chinook salmon that travel farther in the drainage to
spawn (i.e., headwaters) enter the main stem earlier in the season. This
point is supported in the Kuskokwim River based on unpublished ADFG
radio telemetry data, which show that the date at which 50% of
headwaters fish were tagged occurred as many as 10 or 11 days earlier
than tagging of fish bound for middle river and lower river tributaries.
Thus, it is more appropriate to view the timing curve detected by the
BTF index as a mixture distribution made up of several distinct sub-
stocks, each entering at different times. The cumulative effect of this is
one curve that looks logistic likely because the various stocks overlap to
a large extent. However, it is not difficult to see that if in some years the
headwaters sub-stocks made up a greater proportion of the aggregate
stock than the lower and middle river sub-stocks, the timing curve of
the aggregate would be earlier than if other stocks had a greater
contribution. Using genetic techniques, Anderson and Beer (2009)
found that variations in the relative abundances of the populations
composing the spring Chinook salmon run in the Columbia River, USA,
explained 62% of the variation in annual run timing. This is a source of
variation that was not accounted for in this analysis for at least two
reasons. First, the resolution to divide the aggregate curve into its sub-
stock components is not available: Kuskokwim River Chinook telemetry
studies were conducted from 2003 to 2007 and 2015–2016 and the
aggregate timing curve does not deviate enough from the smooth
logistic curve to separate the different sub-stock components. Second,
information on the relative contribution both in the past and in the
forecast year would be necessary to include this complexity in the run
timing forecast. This detailed level of sub-stock information is not
available for the Kuskokwim River. The telemetry data can shed some
light on these issues, but they are confounded by factors like harvest
timing (some stocks may be harvested preferentially purely due to the
timing of the fishery, which does not mirror that of the aggregate run;
Hamazaki, 2011) or the potential of tagging stock components in some
proportion other than their true contribution.

Methods exist to incorporate run timing forecasts from our analysis
into in-season assessment and management efforts. Our daily predic-
tions of EOS, which is an index of run size, could be used to predict the
total end-of-season run size on each day using a regression model that
relates historical reconstructed total run abundance and EOS. These in-
season run predictions could be used to update pre-season run size
forecasts with in-season data using methods such as inverse variance
weighting (e.g., Walters and Buckingham, 1975) or Bayesian inference
(e.g., Fried and Hilborn, 1988). Information-updating may be prefer-
able in cases when the pre-season run forecast is biased, because it
would allow for the perception of run size to pull away from the
forecast when in-season data suggest it is highly unlikely. As we have
shown here, uncertainty in EOS predictions is a function of the
precision in the anticipated proportion of the run completed-to-date
(p̂d ; Eq. (9)). Our analysis suggests that incorporating run timing
forecasts into estimates of p̂d (and thus EOS) may provide managers
with more certainty regarding interpretation of in-season abundance
indices, which would facilitate updating of pre-season forecasts with
data from the run.
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Abstract 23 

Pre-season forecasts of Pacific salmon run strength are notoriously uncertain, and are thus often 24 

updated using various abundance indices collected during the run. However, interpretation of these in-25 

season indices is confounded by uncertainty in migration timing. We assessed the performance of two 26 

Bayesian information-updating procedures for Kuskokwim River Chinook salmon: one that uses auxiliary 27 

run timing information and one that does not, and compared the performance to methods that did not 28 

involve updating. We found that in-season Bayesian updating provided more accurate run size estimates 29 

during the time when harvest decisions needed to be made, but that the incorporation of run timing 30 

forecasts had little utility in terms of providing more accurate run size estimates. The latter finding is 31 

conditional on the performance of the run timing forecast model we used; a more accurate timing forecast 32 

model may yield a different conclusion. The Bayesian approach we developed provided a probabilistic 33 

expression of run size beliefs, which could be useful in a transparent risk-assessment framework for 34 

setting and altering harvest targets in-season.   35 
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1. Introduction 36 

Management strategies for in-river Pacific salmon Oncorhynchus spp. fisheries involve limiting 37 

harvest in-season such that some management reference point is achieved. These reference points are 38 

typically expressed as either a target escapement abundance or a target exploitation rate, or as ranges of 39 

these two quantities. Regardless of which way the management strategy is framed, a reliable measurement 40 

of the harvestable surplus is required to successfully implement the strategy on an annual basis. The 41 

harvestable surplus varies annually based on the total incoming run size, thus information regarding the 42 

total annual run size is often required for management of these fisheries. Run size information can be 43 

categorized into two broad classes: pre-season forecasts (i.e., before fish have arrived in fishery areas) and 44 

in-season estimates (i.e., once fish can be indexed). Though these terms are often used interchangeably 45 

(as are “predictions” and “projections”), for clarity we will refer to methods of the former class as 46 

“forecasts” and methods in the latter class as “estimates”.  47 

Methods to produce pre-season forecasts range from simple models based only on time series 48 

patterns (Haeseker et al. 2005) to complex models that incorporate spawner-recruit relationships (Adkison 49 

and Peterman 2000), sibling relationships (Peterman 1982), and/or environmental variables intended to 50 

explain variability in survival rates (Adkison and Peterman 2000). Murphy et al. (2017) presented pre-51 

season forecast methodology for Yukon River Chinook salmon O. tshawytscha based on trawl surveys 52 

targeting juveniles shortly after marine entry, and this model has recently shown promise (K. Howard, 53 

pers. comm.). Not surprisingly, it has commonly been found that simpler models that do not require 54 

hypotheses about mechanisms driving recruitment variability perform as well or better than more 55 

complex forecast models that require such assumptions (Haeseker et al. 2005, 2008; Winship et al. 2015). 56 

Still, pre-season forecast models generally perform poorly and have wide uncertainty regions, resulting 57 

from incomplete understanding of drivers of survival and recruitment rates (Adkison et al. 1996; Adkison 58 

and Peterman 1999). Inaccurate annual forecasts have socioeconomic consequences for the fisheries that 59 

rely on them: Bocking and Peterman (1988) found correlations between forecast errors and management 60 

performance and Costello et al. (1998) found a high expected value of information for better forecasts 61 
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resulting from improved knowledge of the El Niño phase. These findings highlight the need for improved 62 

methods to produce pre-season forecasts or otherwise update them with in-season estimates as those data 63 

accumulate. 64 

In-season estimators of run size also show quite a range of model complexity. Simple methods 65 

may be based purely on catch-per-effort (CPE) indices whereas more complex methods may incorporate 66 

observations of size/age structure (Flynn and Hilborn 2004) and substock structure (Hyun et al. 2005). 67 

Each of these methods attempt to expand some partially-observed component of the run to the total run 68 

size, and thus their predictive performance is tightly linked to uncertainty regarding run timing (i.e., what 69 

fraction of the run is complete on any given day of the season). For example, large/late runs and 70 

early/small runs have a tendency to create similar CPE indications of an average run early in the season 71 

(Adkison and Cunningham 2015), though neither run scenario would likely have the same harvestable 72 

surplus as an average run. Put another way, with the observation of indications of an average-sized run, 73 

the manager can rarely exclude these other extreme scenarios from consideration, resulting in uncertainty 74 

about how to prosecute the fishery to ensure the management strategy is implemented and annual fishery 75 

objectives are achieved. For this reason, many efforts have been made at forecasting the run timing pre-76 

season as well as the run size (Staton et al. 2017; Mundy and Evenson 2011; Keefer et al. 2008; Anderson 77 

and Beer 2009). However, it is often unclear as to precisely how these run timing forecasts are to be 78 

included into run size estimators, or whether it is preferable to do so at all. 79 

In the presence of multiple run size indicators (i.e., pre-season and in-season sources), it is often 80 

difficult to decide which information sources to trust at which points in the season for making 81 

management decisions when they inevitably disagree. One extreme would be to manage harvests based 82 

on the pre-season forecast all season and entirely ignore any indications provided by in-season estimates. 83 

The other extreme would be to do the opposite: abandon the pre-season forecast the day the first fish is 84 

detected by the in-season index project(s). It is our sense that few managers would feel comfortable 85 

taking either of these extremes, which implies that some method of transitioning from a pre-season 86 

forecast to in-season estimates is warranted. While some managers may prefer transitional approaches 87 



5 
 

based on experience and intuition, a logical method to perform such a transition is based on the variance 88 

of each information source: sources with less uncertainty should drive management decisions more than 89 

those that are more uncertain. The calculations to conduct a formal variance-based transition can be 90 

framed in a classical inferential framework (Walters and Buckingham 1975) or as a Bayesian inferential 91 

problem (Fried and Hilborn 1988, Hyun et al. 2005). The Bayesian approach has a certain appeal as it 92 

provides a full probability model representing uncertainty regarding the truth of all possible run size 93 

outcomes (i.e., hypotheses), which can be seamlessly updated as new (i.e., in-season) information is made 94 

available. Such a probability model could be useful in formal risk assessments in the context of 95 

probabilistic control rules (Catalano and Jones 2014, Prager et al. 2003) used to set harvest targets.  96 

The Kuskokwim River, located in Western Alaska, is a large drainage system that supports large 97 

subsistence fisheries for Chinook salmon. Being the species of greatest subsistence interest for this region 98 

and coupled with recent low abundances, Chinook salmon have been of primary management concern 99 

and is hereafter the focus of this paper. Although the river system is quite large (main-stem > 800 km, 100 

drainage area > 50,000 km2), the majority of the fishery is (in relation) spatially-constricted: 95% of the 101 

drainage-wide Chinook salmon harvest is attributable to the 16 villages located in the first 300 km of the 102 

main-stem and 70% of the total Chinook salmon harvest is attributable to the 10 villages in the first 125 103 

km (Hamazaki 2011). The fishery is managed with time and area closures implemented by emergency 104 

order intended to limit harvest to ensure a drainage-wide fixed escapement goal is met each year. 105 

Information sources for in-season management include a pre-season run size forecast and an in-season 106 

CPE index of in-river abundance and species composition (the Bethel Test Fishery, BTF, operated 107 

annually from June 1-August 24 1984-2017; Bue and Lipka 2016). In recent years, in-season harvest 108 

estimates have also been produced (Staton and Coggins 2016, 2017) and have been used to track progress 109 

toward the attainment of total allowable harvest. Currently, no formal attempts at producing in-season 110 

estimates/updates of run size have been made. Decisions about limiting harvest opportunity have instead 111 

been made by qualitatively determining if the BTF index indicates a different run size than that suggested 112 

by the pre-season forecast by comparing the accumulation of daily CPE against previous years. This 113 
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approach obviously has substantial pitfalls that include: (1) the aforementioned confounding effect of 114 

annual variability in run timing, (2) no accounting of annual variability in BTF catchability (i.e., run-per-115 

index; Flynn and Hilborn 2004), (3) no formal consideration of which source provides more information 116 

about the true run size at varying points in the season, and (4) no explicit expression of how 117 

disagreements between the BTF index and the pre-season forecast should result in alterations to the in-118 

season harvest management strategy (i.e., total allowable harvest). 119 

In this paper, we seek to address these issues by developing a framework to formally update pre-120 

season run size forecasts with in-season estimates of the total run size using Bayesian inference. Using 121 

data from the Kuskokwim River Chinook salmon fishery, we evaluated the assessment framework by 122 

applying it to previous years as well as determined the potential utility of incorporating auxiliary 123 

information from a recently-developed run timing forecast model for this fishery (Staton et al. 2017). Our 124 

objectives were to (1) develop two Bayesian updating tools: one that ignores auxiliary run timing 125 

information and one that includes it, (2) determine if Bayesian updating provides better (more 126 

accurate/precise) inference than using either the forecast or in-season estimates alone, and (3) determine if 127 

incorporating the run timing forecast information improves inferential performance.  128 

2. Methods 129 

  130 

 We developed a Bayesian approach to updating the pre-season perception of run size with in-131 

season data, both in the presence and absence of auxiliary run timing information. The approach proceeds 132 

by (1) determining the pre-season run size forecast for each evaluated year to serve as the prior 133 

distribution (2) obtaining a likelihood function for observed data (cumulative CPE data through day d of 134 

the run) assuming any given run size hypothesis was correct – which involved multiple steps and used a 135 

sequential and parametric Monte Carlo algorithm to estimate this function, and (3) the formal 136 

combination of the information derived in steps (1) and (2) using Bayes’ Theorem to obtain a posterior 137 

probability function. The presence or absence of auxiliary run timing information was incorporated into 138 

step (2) when interpreting the consistency of the CPE data with any one run size hypothesis. The 139 
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reliability of inferences from the prior, likelihood, and posterior were then compared between cases 140 

including and ignoring the auxiliary run timing information.   141 

We performed a leave-one-out cross-validation evaluation of Bayesian approach we developed by 142 

using all currently available information to measure inferential performance. This approach was not 143 

retrospective, as it did not use only information available at the time the tools would have been used in 144 

previous years. Our chosen analysis framework emphasizes that we were not interested in how the tools 145 

would have performed in the past, but rather how they may perform in the future when presented with 146 

runs similar to those that have occurred in the past. The leave-one-out method was used so the model was 147 

not trained using the exact year it was attempting to estimate. The years 1995-2017 were evaluated by 148 

producing weekly updates on June 10, June 17, June 24, July 1, July 8, and July 15. 149 

 150 

2.1 Pre-season run size forecast 151 

 Pre-season run size forecasts for Kuskokwim River Chinook salmon are made by assuming the 152 

current year’s run will be similar in size to the previous year’s run, which stems from the observation of 153 

high serial auto-correlation in the run abundance time series (Figure 1a). The total run size each year is 154 

estimated post-season using a maximum likelihood drainage-wide run reconstruction model that 155 

integrates information from 20 escapement indices, fishery CPE data, mark-recapture-based estimates of 156 

drainage-wide abundance, and total fishery harvest over the time period of 1976-2017 [originally 157 

published in Bue et al. (2012) and most recently presented in Smith and Liller (2018)]. The most recent 158 

estimates provided in Smith and Liller (2018) were used in this analysis and we assumed the point 159 

estimates represented the true run size in these years. Although the “last-year” rule for producing 160 

forecasts has only been used since 2014, we can hindcast its performance over the entire time series to 161 

obtain the precision of the forecast rule if it had been used in the past. Errors in the forecast were assumed 162 

to be multiplicative:  163 

(1) εF,t= log �Nt-1
Nt
�  164 
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where Nt and Nt-1 are the run sizes corresponding to year t and t-1, respectively, and εF,t is the natural 165 

logarithm of the multiplicative error term in the forecast (values < 0 are underestimates and values > 0 are 166 

overestimates). The time series of all such εF,t is presented in Figure 1b, and their distribution is shown in 167 

Figure 1c. The standard deviation of εF,t, hereafter denoted σF, was used to represent the uncertainty in the 168 

forecast in any given year in the analysis, expressed as a bias-corrected lognormal distribution. This 169 

lognormal distribution was assumed to represent the prior knowledge regarding the size of the run in the 170 

absence of in-season assessment data. 171 

2.2 Pre-season run timing forecast 172 

 Run timing forecasts for the Kuskokwim River Chinook salmon stock were produced using the 173 

methodology presented in Staton et al. (2017). Briefly, the forecast model predicts the day of the year at 174 

which 50% of the total annual cumulative CPE will be observed in the BTF (hereafter D50,t) by exploiting 175 

linear regression relationships between D50,t and sea surface temperature, sea ice concentration, air 176 

temperature in Bethel, AK, and the Pacific Decadal Oscillation index. The forecast model was developed 177 

using variable selection criteria to determine the best time periods of these variables to include and 178 

model-averaging to handle forecast model uncertainty. We used the Staton et al. (2017) timing forecast 179 

model to produce forecasts of D50,t for the years 1995-2017, as well as their associated standard errors of 180 

prediction.  181 

2.3 Likelihood Function Construction 182 

 Information about run size is contained in the end-of-season cumulative BTF CPE values 183 

(hereafter denoted as EOSt; Figure 2), and thus these data formed the foundation of linking in-season 184 

abundance index data to different run size hypotheses in a likelihood framework.. The construction of the 185 

likelihood function contained three steps: (1) accounting of the unobserved portion of EOSt on any given 186 

day d of the season (i.e., a run timing expansion), (2) expansion of the EOSt index to the total run 187 

vulnerable to sampling by the BTF (i.e., a catchability expansion) and (3) accounting for harvest that 188 

occurred downstream of the BTF index site (i.e., fish that were never vulnerable to sampling by the BTF). 189 

Given substantial uncertainty exists in each of these steps that must be accounted for in the likelihood 190 
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function, we used parametric Monte Carlo (MC) methods to propagate the uncertainty from one step to 191 

the next by drawing 1x106 samples from each respective distribution and performing the respective 192 

calculations on each MC sample, hereafter indexed by b.  193 

 In the first step (the run timing expansion), the observed cumulative CPE through day d in year t 194 

(hereafter denoted as CCPEt,d) was divided by each MC sample of the anticipated proportion of the run 195 

complete on day d (pd,b) to obtain the MC values of EOS�d,b, which are samples of the index of run size: 196 

(2) EOS�d,t,b=∑ CPEt,i
d
i=1

pd,b
  197 

The way pd,b was obtained was the only difference between the methods in which auxiliary run timing 198 

information was either present or absent. For the method that ignored the presence of the run timing 199 

forecast, historical daily proportions of EOSt were calculated for each previously-observed year. Then, 200 

daily beta distributions were fitted to these proportions using the method of moment-matching (Bolker 201 

2008), such that the mean and variance of the sample proportions and random variables from the beta 202 

distribution were equal. For this method, MC samples from these daily beta distributions were used as 203 

pd,b. For the method that used run timing forecasts, MC samples of the forecasted quantity (D50,t,b) were 204 

inserted into the logistic function: 205 

(3) pd,b= 1
1+e-hb(d-D50,t,b)  206 

to obtain pd,b. Here, hb is a MC sample from the historical distribution of steepness parameters and 207 

represents the degree of compression or protraction of the run timing curve (i.e., the rate at which the run 208 

approaches completion). We have found that D50 and h are independent for the Kuskokwim River 209 

Chinook salmon population, so MC draws capturing their variability were made from independent normal 210 

distributions. 211 

 The second step in the construction of the likelihood functionused the historical relationship 212 

between EOSt and total vulnerable run size (Nvuln,t) to expand from the CPE scale to the abundance scale 213 

(Figure 2). Nvuln,t was calculated as the total run minus the season-wide harvest downstream of the BTF 214 

index site. Although BTF data cover the span of 1984-2017, spatially-explicit harvest data were available 215 
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only for 1990-2017 which prevented calculation of Nvuln,t for the years 1984-1989. Downstream harvest 216 

was calculated as the sum of harvests from all villages downstream of Bethel, plus half of the harvest 217 

from the village of Bethel, plus total annual harvest in the district W1-B commercial fishery. We tried 218 

other values of the assumed amount of Bethel’s harvest that has historically occurred downstream of the 219 

BTF site, and none affected the results of our analysis, so we opted for the “naïve” value of half.  A 220 

regression relationship was then fitted of the form: 221 

(4) log(Nvuln,t)=β0,q+β1,qlog(EOSt)+εt,q  222 

where εt,q is normally distributed with mean zero and standard deviation equal to σq. Due to a change in 223 

the BTF catchability in 2008 resulting from a transition between net-makers (Bue and Lipka 2016), the 224 

shape of this relationship changed requiring the use of two regression models (q subscript): one fitted to 225 

the years 1990-2007 and one fitted to the years 2008-2017 (Figure 2). To produce in-season estimates of 226 

Nvuln,t,b, joint MC samples of (β�0,q,b,β�1,q,b) were drawn from a bivariate normal distribution with 227 

covariance matrix equal to that estimated from the regression procedure, and bias-corrected MC residual 228 

deviates were drawn as ε̂q,b ~ N(-0.5σq
2, σq). These MC regression parameters as well as the MC values 229 

of EOS�d,t,b were inserted into the predictive relationship: 230 

(5) N�vuln,t,d,b=eβ
�

0,q,b+β�1,q,b log�EOS�d,t,b�+ε̂q,b   231 

to obtain MC samples N�vuln,t,d,b. 232 

 The third step in the construction of the likelihood function involved adding MC samples of 233 

cumulative harvest  downstream of the BTF index site (Hd,t,b) to N�vuln,t,d,b to obtain MC values of the total 234 

run size estimate on day d (N�t,d,b). Commercial Chinook salmon harvest by day was assumed known 235 

without error, and the cumulative sum was calculated on each day and year to obtain Hcom,d,t. A method to 236 

reconstruct cumulative subsistence harvest downstream of the BTF was needed, as in-season harvest data 237 

have only recently been available (2016 and 2017). The Alaska Department of Fish and Game (ADF&G) 238 

has collected subsistence harvest calendars which provide an indication of the timing of harvest from each 239 

village (Shelden et al. 2016; Hamazaki 2008). Calendars from villages downstream of the BTF were 240 
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combined, then converted to cumulative harvest proportions for each day d and year t. Multiplying these 241 

annual cumulative proportion time series by the total season-wide harvest downstream of the BTF 242 

provided estimates of Hsub,d,t. To generate MC samples (Hd,t,b), random values of subsistence harvest 243 

(Hsub,d,t,b) were generated from a bias-corrected lognormal distribution with standard deviation equal to 244 

0.15 and the constant Hcom,d,t was added. These Hd,t,b values were added to the N�vuln,t,d,b values to obtain 245 

MC samples of N�t,d,b. 246 

 Once the MC samples of N�t,d,b were obtained (which represented random draws from the 247 

likelihood function), the form of the likelihood probability density function (PDF) was estimated using a 248 

one-dimensional kernel density estimator fitted to the 1x106 MC samples. The resulting function is 249 

hereafter denoted by Pr(CCPEt,d|Nt,i). 250 

2.4 Posterior estimation 251 

 To provide Bayesian in-season updates of the run size estimate, the lognormal distribution 252 

representing uncertainty in the pre-season forecast (Section 2.1) was used as the prior information each 253 

day [Pr(Nt,i); i denotes a continuous run size hypothesis]. Although this was a simple one parameter 254 

Bayesian estimation problem, the likelihood PDF Pr(CCPEt,d|Nt,i) did not have a well-defined parametric 255 

form which could have allowed direct analytical calculation of the posterior PDF [Pr(Nt,i|CCPEt,d)] using 256 

Bayes’ Theorem. Instead, a custom random walk Metropolis-Hastings Markov Chain Monte Carlo 257 

(MCMC) algorithm (Chib and Greenberg 1995) was written using a lognormal proposal distribution. The 258 

lognormal proposal distribution was used as opposed to a symmetrical distribution (like the normal 259 

distribution) to prevent negative proposals. The standard deviation of this proposal distribution was tuned 260 

such that the acceptance rate of proposals was between 0.2-0.4 (Bédard 2007). Posterior convergence was 261 

assessed using two chains with over-dispersed initial values and the Potential Scale Reduction Factor 262 

(Brooks and Gelman 1998), and the Raftery-Lewis diagnostic was used to ensure enough effective 263 

samples were drawn to make adequate inference (Raftery and Lewis 1992). On each evaluated day and 264 

year, 1x105 posterior samples were drawn from each chain with a burn-in period of 1x104. These 265 
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specifications resulted in more than enough samples to meet the criteria for convergence and adequate 266 

inference in all cases. All analyses were conducted in Program R (R Core Team 2015) and all code and 267 

data are provided in the online supplement.  268 

2.5 Metrics of estimator performance 269 

 Performance of the estimators was evaluated using four criteria for each evaluated day d and year 270 

t: (1) mean absolute proportional error (MAPE) to quantify the size of estimation errors, (2) mean 271 

proportional error (MPE) to measure bias, (3) the standard deviation of log-scale multiplicative errors (σ) 272 

to measure variability in estimation errors, and (4) the coverage of the 50%, 80%, and 95% 273 

confidence/credible regions. For calculation of MAPE, MPE, and σ,  the median of the distributions 274 

Pr(Nt,i), Pr(CCPEt,d|Nt,i), and Pr(CCPEt,d|Nt,i) were used as point estimates and the reconstructed values 275 

of Nt (Smith and Liller 2018) were interpreted as the true run sizes. The purpose of evaluating the 276 

performance of inferences from the prior, likelihood, and posterior PDFs was to determine whether 277 

Bayesian updating provided better performance than not updating and trusting either pre-season or in-278 

season indicators completely for the duration of the season. 279 

3. Results 280 

3.1 Mean absolute proportional error 281 

 Errors in inference from the likelihood distribution alone (i.e., BTF data only) were quite large 282 

early in the season, but steadily declined in size as the run approached completion (Figure 3a). On June 283 

10, the median of the likelihood function that used the historical timing frequencies exhibited larger errors 284 

on average (MAPE = 0.52) than did the one that used the timing forecast (MAPE = 0.4), but after this 285 

date MAPE values were essentially equal (Figure 3a). It was not until July 1 that inference from the 286 

likelihood distribution alone exhibited smaller MAPE values than the pre-season forecast (which had a 287 

constant MAPE = 0.18 all season). Conversely, posterior inference yielded smaller MAPE values starting 288 

from June 10 and remained lower than the pre-season forecast all season long (Figure 3a). Posterior 289 

inference when using the timing forecast showed slightly larger errors on average between June 10 and 290 
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July 1 (average MAPE = 0.17) than did posterior inference when using historical timing frequencies 291 

(average MAPE = 0.15).  292 

3.2 Mean proportional error 293 

 In terms of biases, all indicators besides the pre-season forecast showed slight to moderate 294 

negative biases for the whole season (Figure 3b), but the magnitude generally decreased as the season 295 

progressed. The pre-season forecast was slightly positively biased (MPE = 0.04). Bias based on the 296 

likelihood distribution on June 10 differed greatly between the method that used the timing forecast (MPE 297 

= -0.22) and the method that did not (MPE = -0.01). After this date, both methods performed essentially 298 

equally-well and reached essentially no bias by June 24. For posterior inference, the only notable 299 

difference in performance was on June 10, when the method that used historical timing frequencies had 300 

less negative bias than the method that used the timing forecast. 301 

3.3 Variability of errors 302 

 As would be expected from Figure 3a, the variability in errors was greater for inference from the 303 

likelihood distribution than for posterior inference early in the season, and did not become lower than the 304 

variability of pre-season forecast errors until July 1. As was found for MAPE, the variability of errors 305 

from posterior inference were smaller than the pre-season forecast for the entire season, and was always 306 

smaller than inference from the likelihood alone. The only notable difference between the method using 307 

run timing forecasts and the one ignoring them was smaller variability in errors in the likelihood 308 

distributions on June 10.  309 

3.4 Credible region coverage 310 

 With the exception of the 50% region, the pre-season forecast (prior) had appropriate coverage 311 

levels (Table 1; appropriate defined here as coverage being within ± five percentage points of optimal 312 

coverage). Other indicators tended to have less coverage than appropriate on June 10 for the 50% region. 313 

Regions at the 80% and 95% levels were typically more appropriately estimated, with the exception of the 314 

posterior 95% regions on July 8 which appeared to be slightly too narrow (Table 1). In general, likelihood 315 
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coverage was more appropriate than posterior coverage on June 24 and July 8. Coverage values on July 316 

15 are not presented as results were the same as for July 8. 317 

4. Discussion 318 

 The findings of our analysis suggest that using the Bayesian in-season updating procedures 319 

described here would provide more accurate in-season inference regarding the run size than the two 320 

aforementioned extremes: trusting either the pre-season forecast or the in-season estimates all season. 321 

This is not to say that pre-season forecasts are not useful, in fact they were critical in this analysis by 322 

tempering the large errors in the in-season estimates early in the season (Figure 3a). Additionally, pre-323 

season forecasts are required for setting pre-season expectations and anticipated harvest strategies for the 324 

season. Instead, we have shown that it is preferable to update the pre-season forecast as the season 325 

progresses, which could result in alteration of in-season harvest targets if the posterior distribution is 326 

different than the prior distribution. 327 

 We expect that the finding that updating is preferable to not updating is general to systems like 328 

the Kuskokwim River (e.g., the Nushagak and Yukon Rivers located in Western Alaska). These systems 329 

have similar in-season run size indicators (both systems have a sonar and the Yukon River has a lower-330 

river test fishery) that suffer from the same problems as the data for the Kuskokwim, namely variability in 331 

index catchability and the confounding effect of run timing uncertainty. These two problems, particularly 332 

the latter, generally lead to the in-season data providing inaccurate and highly uncertain run size estimates 333 

for much of the season (Flynn and Hilborn 2004, Adkison and Cunningham 2015, Walters and 334 

Buckingham 1975). Thus, it is logical to expect that the desirability of updating pre-season forecasts 335 

rather than fully trusting in-season estimates (i.e., the likelihood function in Bayes’ Theorem) alone 336 

would be a general finding. The example of the Kuskokwim River assessment tool we developed is a 337 

generalization of previously-developed updating methods (e.g., Fried and Hilborn 1988) and could be 338 

generalized to other systems for the purpose of arbitrating between the relative information content of 339 

pre-season and in-season run size indicators, including those involving mixed stocks if timely data on the 340 

substock contribution to the total indicators were available.  341 



15 
 

 We found that posterior inference gave smaller errors and less variability in errors than the pre-342 

season forecast starting on the first day of our analysis: June 10. Under current regulation, directed 343 

Chinook salmon fisheries cannot begin prior to June 12 in the Kuskokwim River, which was implemented 344 

to allow the early-running headwaters fish to pass through the majority of the lower-river fishery to spawn 345 

and be vulnerable to fishers in the upper-river. Thus, updates before this point are of little utility under the 346 

current management regime, but updates after are critical. Our work has shown that updates in this latter 347 

period are not only reliable, but in fact preferable to not updating at all. 348 

 A key finding of our analysis was that incorporating auxiliary run timing information in the 349 

assessment provided no real gain in performance. There was even evidence to suggest ignoring the run 350 

timing forecast actually performed better than incorporating it (for posterior inference, Figures 3a,b). This 351 

is not overly surprising given that Staton et al. (2017) reported that using the mean D50,t values provided 352 

slightly more accurate run timing forecasts than the environmental variable forecast. This is likely a result 353 

of the large number of years with average timing: although D50,t has exhibited a range of 17 days, 35% of 354 

past years have been within ± 1 day of the mean and 53% of past years have been within ± 2 days of the 355 

mean (Staton et al. 2017). The conclusion of no gain in performance in the presence of the run timing 356 

forecast was conditional on the accuracy and precision of the Staton et al. (2017) forecast model; because 357 

we did not evaluate performance for other systems, this finding may not be general. For systems that 358 

show greater (and more predictable) annual variability in run timing, it very well may be preferable to 359 

incorporate the auxiliary timing information. It is also possible that a better timing forecast model for the 360 

Kuskokwim River may become available in the future, in which case this study should be replicated to 361 

determine whether and to what degree increased predictive performance regarding run timing is reflected 362 

in the performance of in-season run assessments. To our knowledge, our work is the first to formally 363 

compare the performance of in-season abundance estimators in the presence and absence of auxiliary run 364 

timing information, and it suggests that careful consideration should be made before making the decision 365 

to incorporate such information.  366 
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 Our approach used the only available index of abundance for Kuskokwim River Chinook salmon 367 

to provide the information on which to perform the updates: the BTF. Although extensive monitoring 368 

activities occur in this drainage, they are used primarily for indexing escapement and given the size of the 369 

system, they are not useful for in-season assessment. There are eight weirs operated with some 370 

consistency in the system, but fish do not typically arrive until mid-July when much of the run has passed 371 

the majority of the harvest area. However, in systems for which this time lag is not so great (like Bristol 372 

Bay sockeye salmon in which escapement counting towers are often only several days of travel upstream 373 

of the fishery districts), it is possible to include other information into the likelihood component of the 374 

Bayesian calculations which may provide better inference. Recently, a lower-river sonar project has been 375 

operated in the Kuskokwim River, which could provide such additional information. However, given this 376 

project is still very much in its infancy, we suggest waiting until it can be shown that it provides a reliable 377 

index of the run. If it is proven to be reliable, a decision of how to incorporate sonar data will need to be 378 

made. Two methods are immediately obvious: (1) incorporate it as an additional likelihood term the 379 

calculation of the posterior or (2) calculate two posteriors (one for the BTF and one for the sonar) and 380 

perform Bayesian model averaging. The latter of the two options would be preferable if placing unequal 381 

prior probabilities on the two models is desired. 382 

 Although the likelihood component of Bayes’ Theorem was derived from parameters without 383 

prior distributions (pd, β0,q, β1,q, and σq), we still consider the approach to obtaining a daily posterior 384 

distribution of total abundance as fully Bayesian. Presumably, an approach could be constructed that 385 

incorporated all the MC steps we performed to obtain the likelihood formulation as well as the posterior 386 

calculations into a single MCMC algorithm. However, we see this as no more Bayesian than the approach 387 

we developed, as in either case the only parameter with a meaningful prior was total run abundance, and 388 

no information exists in the current year’s CPE data to update any of these other parameters. Other 389 

Bayesian approaches (Fried and Hilborn 1988) present the estimation of likelihood functions without 390 

priors on the parameters that inform them, which is equivalent to the approach we used.  391 
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 We sought to address the four previously-identified issues with qualitative salmon run size 392 

assessment, which we believe our Bayesian approach does fully. The first issue was inadequate treatment 393 

of run timing uncertainty: our method accounts for this uncertainty fully in the MC sampling from the 394 

historical (or forecasted) frequency of different run completion proportions on each day. The second issue 395 

was the lack of accounting for annual variability in BTF catchability: our method accounts for this in the 396 

full propagation of the uncertainty in the regression relationships in Figure 2. The third issue was a lack of 397 

the consideration of how much weight to place on pre-season versus in-season run size indicators, which 398 

our method handles intuitively using the laws of probability and Bayesian inference. The final issue was 399 

the lack of a formal expression for how disagreements in pre-season and in-season indicators should 400 

result in alterations to the harvestable surplus. While this last issue is much more about management than 401 

assessment, it is not difficult to see that our method provides the information to inform such a decision. 402 

On any day of the season, the probability of any escapement outcome of interest [e.g., Pr(escapement < 403 

lower bound of the escapement goal)] conditional on a candidate harvest target can be calculated from the 404 

posterior. If this probability is deemed unacceptable, additional candidates can be proposed until the 405 

probability of the escapement outcome is deemed suitable. A similar approach could easily be extended to 406 

salmon fisheries managed with limit exploitation rates, by calculating the posterior exploitation rate if the 407 

candidate harvest target were to be taken (candidate harvest divided by posterior samples of total 408 

abundance) and determining if the associated probability of falling above the limit rate is acceptable. 409 

These calculations are trivial once the posterior total abundance estimate has been obtained, and the 410 

overall procedure aligns closely with the probabilistic approach to the use of limit reference points in 411 

precautionary fisheries management, which has been gaining popularity in framing sustainable harvest 412 

policies for U.S. marine fisheries (Prager et al. 2003; Shertzer et al. 2011). Herein lies what we see as the 413 

greatest contribution of this work: it provides an assessment framework that can be used to provide 414 

greater transparency for harvest management decisions that are framed in terms of uncertainty and risk. 415 

5. Acknowledgements 416 



18 
 

 We would like to thank all ADF&G personnel involved with collecting the data from the BTF for 417 

the past three decades as well as the other assessment projects that made this work possible. Additionally, 418 

we would like to thank N. Smith (ADF&G),L. Coggins, and G. Decossas (U.S. Fish and Wildlife Service) 419 

for their comments on earlier drafts of this paper and input on the potential utility of the tools we 420 

evaluated for in-season management. We would also like to thank two anonymous reviewers for their 421 

insightful comments which ultimately improved this work. Funding for this work was provided by the 422 

Arctic-Yukon-Sustainable Salmon Initiative and the Bering Sea Fisherman’s Association through a grant 423 

to M. Catalano. The findings and statements herein are those of the authors and do not reflect the views of 424 

the U.S. Fish and Wildlife Service.   425 



19 
 

References 426 

Adkison, M.D., Peterman, R.M., Lapointe, M.F., Gillis, D.M., Korman, J., 1996. Alternative models of 427 

climatic effects on sockeye salmon, Oncorhynchus nerka, productivity in Bristol Bay, Alaska, 428 

and the Fraser River, British Columbia. Fisheries Oceanogr. 5:137-152. 429 

Adkison, M.D., Peterman, R.M., 2000. Predictability of Bristol Bay, Alaska, sockeye salmon returns one 430 

to four years in the future. N. Am. J. Fish. Manage. 20: 69-80. 431 

Adkison, M.D., Cunningham, C.J., 2015. The effects of salmon abundance and run timing on the 432 

performance of management by emergency order. Can. J. Fish. Aquat. Sci. 72: 1518-1526. 433 

Anderson, J.J., Beer, W.N., 2009. Oceanic, riverine, and genetic influences on spring Chinook salmon 434 

migration timing. Ecol. App. 19: 1989-2003. 435 

Bédard, M., 2007. Weak convergence of Metropolis algorithms for non-i.i.d. target distributions. The 436 

Ann. App. Probab.. 17: 1222-1244. 437 

Bolker, B.M., 2008. Ecological Models and Data in R. Princeton University Press, 396 pp. 438 

Brooks, S.P., Gelman, A., 1998. General methods for monitoring convergence of iterative simulations. J. 439 

Comp. Gr. Stat. 7: 434-455.  440 

Bue, D.G., Lipka, C.G., 2016. Characterization of the 2011 salmon run in the Kuksokwim River based on 441 

the test fishery at Bethel. Alaska Department of Fish and Game, Fishery Data Series No. 16-05, 442 

Anchorage, AK. Available at: http://www.adfg.alaska.gov/FedAidPDFs/FDS16-05.pdf [last 443 

accessed 4.12.2018]. 444 

Bue, B.G., Schaberg, K.L., Liller, Z.W., Molyneaux, D.B., 2012. Estimates of the historic run and 445 

escapement for the Chinook salmon stock returning to the Kuskokwim River, 1976-2011. Alaska 446 

Department of Fish and Game, Fishery Data Series No. 12-49, Anchorage, AK. Available at: 447 

http://www.adfg.alaska.gov/FedAidPDFs/FDS12-49.pdf [last accessed 4.12.2018]. 448 

Catalano, M.J., Jones, M.L., 2014. A simulation-based evaluation of in-season management tactics for 449 

anadromous fisheries: Accounting for risk in the Yukon River fall chum salmon fishery. N. Am. 450 

J. Fish. Manage. 34:1227-1241. 451 

http://www.adfg.alaska.gov/FedAidPDFs/FDS16-05.pdf
http://www.adfg.alaska.gov/FedAidPDFs/FDS12-49.pdf


20 
 

Chib, S., Greenberg, E., 1995. Understanding the Metropolis-Hastings Algorithm. Am. Stat. 49: 327-335.  452 

Costello, C.J., Adams, R.M., Polasky, S., 1998. The value of El Niño forecasts in the management of 453 

salmon: a stochastic dynamic assessment. Am. J. of Agri.  Econ. 80: 765-777.  454 

Flynn, L., Hilborn, R., 2004. Test fishery indices for sockeye salmon (Oncorhynchus nerka) as affected 455 

by age composition and environmental variables. Can. J. Fish. Aquat. Sci. 61: 80-92. 456 

Fried, S.M., Hilborn, R. 1988. Inseason forecasting of Bristol Bay, Alaska, sockeye salmon 457 

(Oncorhynchus nerka) abundance using Bayesian probability theory. Can. J. Fish. Aquat. Sci. 45: 458 

850-855. 459 

Haeseker, S.L., Peterman, R.M., Zhenming, S., Wood, C.C., 2005. Retrospective evaluation of preseason 460 

forecasting models for pink salmon. N. Am. J. Fish. Manage. 25: 897-918. 461 

Haeseker, S.L., Peterman, R.M., Zhenming, S., Wood, C.C., 2008. Retrospective evaluation of preseason 462 

forecasting models for sockeye and chum salmon. N. Am. J. Fish. Manage. 28: 12-29. 463 

Hamazaki, T. 2008. “When people argue about fish, the fish disappear.” Fish. 33: 495-501.  464 

Hamazaki, T. 2011. Reconstruction of subsistence salmon harvests in the Kuskokwim Area, 1990-2009. 465 

Alaska Department of Fish and Game, Fishery Manuscript Series No. 11-09, Anchorage, AK. 466 

Available at: http://www.adfg.alaska.gov/FedAidPDFs/FMS11-09.pdf [last accessed 4.12.2018]. 467 

Hyun, S.Y., Hilborn, R., Anderson, J.J., Ernst, B. A statistical model for in-season forecasts of sockeye 468 

salmon (Oncorhynchus nerka) returns to the Bristol Bay districts of Alaska. Canadian Journal of 469 

Fisheries and Aquatic Sciences. 1665-1680.  470 

Keefer, M.L., Peery, C.A., Caudill, C.C., 2008. Migration timing of Columbia River spring Chinook 471 

salmon: effects of temperature, river discharge, and ocean environment. Trans. Am. Fish. Soc. 472 

137: 1120-1133. 473 

Murphy, J.M., Howard, K.G., Gann, J.C., Cieciel, K.C., Templin, W.D., Gutherie, C.M., 2017. Juvenile 474 

Chinook salmon abundance in the northern Bering Sea: Implications for future returns and 475 

fisheries in the Yukon River. Deep Sea Res. Pt. II: Top. Stud. Oceanogr. 135: 156-167. 476 

http://www.adfg.alaska.gov/FedAidPDFs/FMS11-09.pdf


21 
 

Mundy, P.R., Evenson, D.F., 2011. Environmental controls of phenology of high-latitude Chinook 477 

salmon populations of the Yukon River, North American, with application to fishery 478 

management. ICES J. Mar. Sci. 68: 1155-1164. 479 

Peterman, R.M., 1982. Model of salmon age structure and its use in preseason forecasting and studies of 480 

marine survival. Can. J. Fish. Aquat. Sci. 39: 1444-1452. 481 

Prager, M.J., Porch, C.E., Shertzer, K.W., Caddy, J.F., 2003. Targets and limits for management of 482 

fisheries: a simple probability-based approach. N. Am. J. Fish. Manage. 23:349-361.  483 

R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for 484 

Statistical Computing, Vienna, Austria. https://www.R-project.org/.  485 

Raftery, A.E., Lewis, S.M., 1992. How many iterations in the Gibbs sampler? J. Bernardo et al. (Eds.), 486 

Bayesian Statistics, University Press Oxford, pp. 765-776.  487 

Shelden, C.A., Hamazaki, T., Horne-Brine, M., and Roczicka, G., 2016. Subsistence salmon harvests in 488 

the Kuskokwim area, 2015. Alaska Department of Fish and Game, Fishery Data Series No. 16-489 

55, Anchorage, AK. Available at: http://www.adfg.alaska.gov/FedAidPDFs/FDS16-55.pdf [last 490 

accessed 4.12.2018].  491 

Shertzer, K.W., Prager, M.H., Williams, E.H., 2011. Probabilistic approaches to setting acceptable 492 

biological catch and annual catch targets for multiple years: reconciling methodology with 493 

national standards guidelines. Mar. Coast. Fish. 2: 451-458. 494 

Smith, N.J., Liller, Z.W., 2018. 2017 Kuskokwim River Chinook salmon run reconstruction and 2018 495 

forecast. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional 496 

Information Report 3A18-02, Anchorage, AK. Available at: 497 

http://www.adfg.alaska.gov/FedAidPDFs/RIR.3A.2018.02.pdf [last accessed 4.12.2018]. 498 

Staton, B.A., Coggins, L.G., 2016. In-season harvest and effort estimates for 2016 Kuskokwim River 499 

subsistence salmon fisheries during block openers. U.S. Department of Interior, Fish and Wildlife 500 

Service, Yukon Delta National Wildlife Refuge, Bethel, AK. Accessible at: 501 

https://www.r-project.org/
http://www.adfg.alaska.gov/FedAidPDFs/FDS16-55.pdf
http://www.adfg.alaska.gov/FedAidPDFs/RIR.3A.2018.02.pdf


22 
 

https://www.fws.gov/uploadedFiles/2016KuskokwimSubsistenceSalmonHarvest.pdf [last 502 

accessed 4.12.2018]. 503 

Staton, B.A., Coggins, L.G., 2017. In-season harvest and effort estimates for the 2017 Kuskokwim River 504 

subsistence salmon fisheries during block openers. U.S. Department of Interior, Fish and Wildlife 505 

Service, Yukon Delta National Wildlife Refuge, Bethel, AK. Accessible at: 506 

https://www.fws.gov/uploadedFiles/2017KuskokwimSubsistenceSalmonHarvest.pdf [last 507 

accessed 4.12.2018]. 508 

Staton, B.A., Catalano, M.J., Farmer, T.M., Abebe, A., Dobson, F.S., 2017. Development and evaluation 509 

of a migration timing forecast model for Kuskokwim River Chinook salmon. Fish. Res. 194: 9-510 

21.  511 

Walters, C.J., Buckingham, S. 1975. A control system for intraseason salmon management. International 512 

Institute for Applied Systems Analysis Working Paper. WP-75-028. 19 pp. 513 

Winship, A.J., O’Farrell, M.R., Satterhwaite, W.H., Wells, B.K., Mohr, M.S. 2015. Expected future 514 

performance of salmon abundance forecast models with varying complexity. Can. J. Fish. Aquat. 515 

Sci. 72: 558-569.   516 

https://www.fws.gov/uploadedFiles/2016KuskokwimSubsistenceSalmonHarvest.pdf
https://www.fws.gov/uploadedFiles/2017KuskokwimSubsistenceSalmonHarvest.pdf


23 
 

Table 1. Estimated coverage of various regions in the prior, likelihood, and posterior distributions.  517 

Information Source June 10  June 24  July 8 
50% 80% 95%  50% 80% 95%  50% 80% 95% 

Prior 70 78 96  70 78 96  70 78 96 
Likelihood (Fcst. Timing) 30 52 87  39 78 96  48 83 96 
Likelihood (Hist. Timing) 39 74 100  61 83 96  48 78 96 
Posterior (Fcst. Timing) 43 70 91  52 65 91  48 70 87 
Posterior (Hist. Timing) 57 87 96  57 78 96  43 70 87 

  518 
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FIGURE CAPTIONS 519 

Figure 1. (a) Estimated run size time series from 1976-2017 presented in Smith and Liller (2018), (b) 520 

time series of log scale multiplicative pre-season forecast errors (εF,t), and (c) distribution of the εF,t 521 

values. 522 

Figure 2. Fitted regression relationships between the run size vulnerable to sampling (Nvulnt,t) by the 523 

Bethel Test Fishery (BTF) and the end-of-season cumulative BTF catch-per-effort (EOSt) as described by 524 

Eq. (4) and used to predict run size in-season using Eq. (5). Numbers represent the year observations were 525 

made. Grey years and lines represent the first catchability period and black years and lines represent the 526 

second catchability period, as described in the text.  527 

Figure 3. (a) Mean absolute proportional error of median run estimates, (b) mean proportional error of 528 

median run estimates, and (c) standard deviation of log scale multiplicative errors [log(estimate/true)] 529 

throughout the season. Triangles represent errors from the likelihood distribution and circles represent 530 

errors from the posterior distribution. Filled symbols represent the method that does not use the run 531 

timing forecast and empty symbols represent the method that does. Grey lines are the errors from the pre-532 

season run size forecast (i.e., the prior).  533 
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