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II. ABSTRACT 
Evaluating hypotheses for AYK Chinook salmon (Oncorhynchus tshawytscha) declines and 

managing these stocks requires that we obtain reliable estimates of stock status, trends, and 
productivity. These estimates have been obtained from a novel drainage-wide run reconstruction model 
developed specifically for this data-limited case.  However, this model may have potential pitfalls that 
warrant further investigation.  In particular, the model may be susceptible to bias stemming from 
incomplete temporal and spatial coverage of run enumeration projects and natural between-stock 
variation in population dynamics within a drainage.  Although the model estimates total drainage-wide 
abundance, spawner recruit analysies are necessary for setting management advice and these analysis 
are typically completed in a second separate analysis from the abundance reconstruction, which may 
not allow for realistic propagation of uncertainty from observation level data to quantities of interest to 
managers such as Smsy.  Numerous assumptions regarding sampling precision and bias are also made in 
these model and these assumptions warrant further investigation.  

To address these issues we used a series of computer simulation-estimation analyses to test the 
Kuskokwim River run reconstruction and spawner recuit analyses.  In Chapter 1 of this report we 
evaluated the influence of (1) among-stock within-drainage temporal variation in recruitment, (3) data 
quantity, and (4) data type on the accuracy and precision of these models.  We will also considered the 
costs of data collection scenarios in light of model performance.  In Chapter 2, we introduce and 
evaluate an integrated Bayesian approach to the analysis that combines the run abundance 
reconstruction and the spawner-recruit analysis into a single model to potentially allow for a more 
appropriate accounting of uncertainty.  We then evaluated the sensitivity of this model to assumptions 
regarding data accuracy and precision.  In Chapter 3, we revisit the run abundance reconstruction 
(specifically the 2014 version of the model) and evaluate several alternative models that represent 
different approaches to weighting the various data sources available to the model.  

One of the most important data inputs to the run abundance reconstruction model are the 
telemetric mark-recapture drainage-wide escapement estimates.  These estimates are the sole source of 
population scaling information for the run abundance reconstruction model and are therefore of critical 
importance.  In Chapter 4, we demonstrate a new Bayesian analysis of the 2003-2007 telemetric mark 
recapture analysis that make full use of the spatial and temporal structure of the telemetry data to 
provide estimates of tributary-specific abundance and run timing at the Birch Tree Corssing tagging site. 

In data limited situations, we often lack sufficient data to estimate stock status and Smsy.  In 
these cases, alternative methods for informing these quantities are sought.  One option is to develop 
relationships between easily measured basin scale habitat variables and salmon carrying capacity and/or 
productivity.  In Chapter 5, we explored such relationships for Alaskan Chinoook salmon via a model 
selection exercise. 

Each of these analyses represents one component of a broader effort to evaluate methods for 
salmon stock assessment in data-limited situations, specifically in the context of Kuskokwim Chinook 
salmon, a stock of great cultural, economic and ecological importance.  Below, we provide a brief 
overview of each of these analyses. 

 
Chapter 1: The performance of a drainage-wide salmon run reconstruction model under alternative data 
collection schemes and population dynamics assumptions 

Kuskokwim River Chinook salmon abundance is estimated using a drainage-wide run 
reconstruction model.  The model is fitted to aerial survey escapement indices, weir escapement counts, 
harvest estimates, and occasional drainage-wide mark-recapture estimates of total escapement.  The 
performance of this model at estimating drainage-wide escapement (and abundance) has yet to be 
evaluated.  We assessed the performance of the model, in terms of bias and precision of drainage-wide 
escapement estimates, under a range of scenarios that involved different data collection schemes and 
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varying assumptions regarding population dynamics.  Different data collection schemes included a range 
of the number of weirs and aerial surveys sampled annually, and the frequency of drainage-wide mark-
recapture total escapement estimates. We also considered the cost of data types to provide guidance on 
their relative efficiency.  In terms of population dynamics assumptions, we assessed the sensitivity of 
model performance to the magnitude of variation in tributary stock contributions to total escapement, 
recruitment variation, and among-tributary correlations in recruitment variation.  As expected, mean 
bias of escapement estimates decreased and precision increased with increasing numbers of aerial 
surveys, weirs, and mark-recapture total escapement estimates.  However, we observed diminishing 
returns with respect to bias and precision with greater than approximately 10 aerial surveys and 6 weirs 
per year, and more than two sets of three-year mark recapture drainage-wide escapement estimates 
per 40 years.  No optimal data configuration was found; for example, similar estimates of bias and 
precision could be achieved by increasing the number of aerial sruveys while decreasing the number of 
weirs, and vice versa. Overall, average bias (mean relative error) was <0.06 (6%) and the average CV of 
escapement estimates was <0.1 (10%) across all data scenarios we evaluated.  These values are low 
enough to suggest the the model performed reasonably well at recovering the true escapement 
estimates that were simulated, at least under the range of scanarios we evaluated.  Bias and precision of 
escapement estimates were sensitive to the degree of correlation in recruitment variability among 
tributary stocks, the magnitude of recruitment variation, and precision of drainage wide mark-recapture 
escapement esitmates.  An analysis of the cost of different data types (aerial survey, weir, mark-
recapture), indicated that aerial surveys provide a substaitially greater improvement in the precision of 
escapement esimtate per unit cost than the other data types.  This finding suggests that increasing the 
number of aerial surveys may be a realatively cost effective way to improve escapement estimates, at 
least in the context of this particular run reconstruction model.  We caution that although aerial surveys 
were more cost effective than weirs, our analysis did not consider additional advantages of weirs 
beyond escapement estimation such as their critical importance for collecting age, sex and length data, 
and as a recapture point for tagging studies.  Thus, weirs will likely continue to be an important 
component of any effective data collection scheme into the future.  Although the drainage-wide run 
reconstruction appeared to perform well in our sinmulation, we recommend that the model continue to 
be challenged via simulation to assess how well it performs under additional assumption violations such 
as systematic variation (i.e., temporal trends) in the relative contribution of each tributary to the total 
escapement. 

 
Chapter 2: Evaluation of an integrated run reconstruction and spawner-recruit model for Kuskokwim 
River Chinook salmon 
 Stock assessment scientists are often faced with decisions regarding how to incorporate 
information into models. One primary decision revolves around how estimates that are summaries of 
raw data should be treated (e.g., abundance estimates derived from relative indices of abundance). The 
choice is to fit the terminal model after a sequence of models that produce estimates used as data or to 
integrate the raw data into the terminal analysis. Each approach has advantages and disadvantages that 
constitute a suite of trade-offs which are described in further detail. These trade-offs are investigated 
here by comparing a sequential analysis to an integrated analysis for Pacific salmon stock assessment, 
using the Kuskokwim River Chinook salmon stock, located in western Alaska, as a case study. The 
terminal analysis in both cases is an age-structured Bayesian state-space spawner-recruit model used to 
derive estimates of productivity and capacity for use in setting escapement targets. Primary findings 
showed that the two approaches returned similar estimates of population dynamics parameters and 
management reference points, both in terms of point estimates and uncertainty, showing that the 
treatment of measurement uncertainty in the sequential analysis was an adequate treatment of the 
information content of the data. The primary advantage of the integrated analysis was the added 
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realism of sharing calendar year abundance data between brood years, but came at the cost of slow run 
times. This exercise showed that while there is a trade-off between sequential and integrated analyses 
in terms of model complexity and realism, it may not be large enough to warrant an integrated analysis 
in all cases.  We also investigated the sensitivity of estimates of total abundance from the integrated 
model to changes in the assumed variances of harvest observations, and the assumed precision and bias 
of the telemetric mark-recapture estimates of drainage-wide escapement.  We found that drainage-
wide estimates of escapement were insensitive to changes in the assumed sampling variance of harvest 
data and telemetric mark-recapture escapement estimates.  However, the escapement estimates were 
very sensitive to bias in the telemetric mark-recapture data as the estimates rescaled proportionally to 
accomade the change in the mark-recapture data.  These findings highlight the common-sense notion 
that obtaining accurate estimates of drainage-wide escapement from telemetric mark-recapature 
studies is very important in the pursuit of unbiased estimates from this run reconstruction model. 
 
Chapter 3: Description of the Kuskokwim River Chinook salmon run reconstruction and an investigation 
of data weighting: a report to the Kuskokwim River Salmon Management Working Group 

We conducted a suite of independent analyses investigating the consequences of different ways 
of weighting weir and aerial survey data in the 2014 run reconstruction model for Kuskokwim River 
Chinook salmon.   The purpose of the analysis was to provide the Kuskokwim Salmon management 
Working Group with an independent review of a few plausible modeling approaches in preparation for 
the 2014 salmon run.  We concluded that the model structure was generally consistent with broadly 
applied and accepted stock assessment modeling approaches.   We investigated the results of 5 
different models. Four of the models were different approaches to weighting weirs and aerial surveys, 
and the fifth incorporated the 2014 mark-recapture abundance estimate: (1) ADF&G base model: 
individual weights are estimated for each escapement monitoring project, (2) Pooled weights model: a 
common weight is estimated for all weir projects and one common weight is estimated for all aerial 
survey projects, (3) No 2014 weirs model: 2014 weir counts are excluded from the ADF&G base model, 
(4) No 2014 aerial surveys model: 2014 aerial surveys are excluded from the ADF&G base model, and (5) 
With MRC model: the ADF&G model including the 2014 mark-recapture estimate.  All of the models 
resulted in the same major conclusion that the 2014 run was lower than average and the drainage-wide 
escapement goal was met. The estimated weights for weirs were higher than for the aerial surveys, 
which means that, all else being equal, the model’s predictions will more closely match the weir data 
overall.  Retrospective analyses showed that the ADF&G base model run estimates varied more than the 
pooled weights model as more data were added, but neither model exhibited worrisome retrospective 
patterns.  The ADF&G base model exhibited an undesirable tendency to perfectly fit to one of the weir 
time series in some years.  This behavior is extreme and warrants further investigation and 
consideration of alternate models because it suggests that in those cases the model treated one of the 
weirs as a perfect indicator of escapement.  This extreme behavior occurred in two out of eight years in 
the retrospective analysis: 2007 and 2010.  Both of these years were not years in which the model was 
used to make management decisions.  Future modeling efforts should continue to investigate alternate 
weighting schemes and model structures.  The pooled weights model we constructed represents a 
sensible first step in this direction, but there are likely many other potential model structures that could 
be considered. 
 
Chapter 4: A bayesian model to estimate Kuskokwim River Chinook tributary run timing and abundance 
from telemetric mark-recapture data 

We conducted a new analysis of the telemetric mark-recapture data from Kuskokwim River 
Chinook salmon from 2003-2007 to demonstrate a new analytical approach that has the potential to 
take advantage of the full range of spatial and temporal information contained in these data.   
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Specifically we sought to quantify estimates of abundance and run timing for tributary-specific Chinook 
salmon stocks in the Kuskokwim drainage while simultaneously estimating total escapement upstream 
of the tagging site.  To accomplish this goal, we used a Bayesian modification of the maximum likelihood 
methods described in Bromaghin et al. (2010). Across all years, five of the twelve tributary groups 
(Mainstem [mean proportion = 0.15], Aniak & Middle Tributaries [0.19], Holitna River [0.09], Hoholitna 
River [0.18], and Kogrukluk River [0.11]) were consistently the largest contributing groups to the run 
across all time strata. On average these groups composed 0.72 of the total run. Tributary-specific 
temporal patterns also existed. Chinook salmon from upstream tributary groups tended to complete 
their migrations earlier than those from middle and Holitna tributary groups.  Two upstream tributary 
groups, Upper Kuskokwim Tributaries and Swift River, contributed large proportions to the run during 
the first two time strata (22 June & earlier), but their contributions declined during the final three time 
strata (23 June & later).  While this trend was clearly evident from the run timing proportions from each 
tributary group, the proportional composition of the run indicated that even though these upper 
tributary groups had higher run timing proportions early in the run they were less abundant than middle 
or Holitna tributary groups at the tagging site at this time due to the high abundance of the middle 
tributary stocks. Annual trends in total abundance were similar to those found in Schaberg et al. (2012) 
using the Lincoln-Petersen estimator. While annual trends were similar, the Bayesian model tended to 
predict lower total abundance than Schaberg et al. (2012) in most years (2003-2006; range: 15 – 23% 
lower), with the difference between the Bayesian model and Schaberg et al. (2012) model estimates 
increasing as population abundance increased (Figure 1).  In conclusion, the finer-scale information on 
run timing and abundance provided by the Bayesian model should be useful to ongoing management 
efforts aimed at understanding the diversity of Chinook salmon spawning stocks within the Kuskokwim 
River Drainage. 

 
Chapter 5: Associations between Alaskan Chinook salmon population characteristics and drainage-wide 
habitat variables 

Management strategies for Alaska Chinook salmon rely on biological reference points (e.g., SMSY) 
to set harvest targets which are traditionally derived using spawner-recruit analysis. However, not all 
stocks in Alaska are sampled intensively enough to allow for derivation of reference points through 
spawner-recruit analyses, yet their management must still be based on stock-specific reference points. 
Habitat-based methods have been developed to predict SMSY for stocks without adequate spawner-
recruit information based on a subset of stocks that do have this information. These models form a 
linear predictive relationship between SMSY and certain habitat characteristics (e.g., drainage area) that 
can be used for more data-limited stocks. Here I build on this work by developing a hierarchical 
modeling approach for Alaskan Chinook salmon stocks that incorporates the uncertainty in stock-
specific SMSY and applying a suite of model selection techniques to select habitat variables that have 
predictive credibility. Findings showed that hierarchical inclusion of uncertainty in SMSY did not remove 
the relationship between drainage area and SMSY, showing that this relationship may still be used even 
when including this additional source of variation. Three of the four variable selection techniques 
consistently agreed on the best variables. The deviance information criterion performed poorly at 
distinguishing models and potential explanations are discussed. Drainage area as the sole predictor was 
unanimously chosen by the best model under the three remaining model selection approaches. 
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III. PRESS RELEASE 
 

Having reliable estimates of stock status, carrying capacity, and trends in abundance are critical 
for effective management of Pacific salmon.  In Western Alaska, data on these salmon stocks is often 
difficult to collect due to extreme weather, the vast expanse of the territory, and poor access.  In these 
situations it is important to develop sound methods for stock assessment that can deal with limitations 
in the quantitiy and quality of the data.  Fortunately, such methods exist, particularly for the Kuskokwim 
River Chinook salmon stock. However, these methods have not yet been fully evaluated to see how well 
they characterize the status of this stock.  A team of researchers from Auburn University took on this 
task by evaluating the performance of stock assessment for Kuskokwim Chinook in a project funded by 
the Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative. A trick that scientists use to test how well a 
model is working is to simulate plausible fake data on a computer then run these data through the stock 
assessment model to see how well it can recover the true status of the fish stock that was simulated.  
The Auburn team used this approach to test the Kuskokwim Chinook assessment model and to evaluate 
what types of data make the model perform best and to see which ones are most cost-effective.  They 
found that the model generally performs well and provides reliable estimates of spawning abundance 
and that adding more aerial surveys (that’s counting fish in the river from abiove in an airplane) 
provided the most bang for the buck in terms of giving us the most reliable estimates at the least cost.  
That’s not to say that other types of data such as weirs (imagine a fence across the stream so that each 
salmon can be individually counted as it passes upstream to spawn) are not needed.  Weirs are 
important because they allow biologists to get their hands on fish to measure and weigh them. But the 
team found that at least when it comes to estimating the total spawning abundance, air surveys did an 
adequate job but were so much cheaper than weirs that they ended up being the most cost-effective.  
The Auburn team also conducted a sensitivity analysis to evaluate if the Kuskokwim Chinook model 
results would change if the model was set up differently.  In general they found that the model results 
were consistent unless major changes were made to the data inputs.  For example, the estimates of 
spawning abundance from the model increased substantially if they assumed that the fish tagging data 
fed into the model gave an inaccurate picture of the abundance of the stock.  Ultimately, the Auburn 
team hoped to provide fishery managers and stakeholders with better tools to help them assess the 
status of the stock and make carefully-considered management decisions.  
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IV. PROJECT EVALUATION 
 
The proposed project had four objectives as follows: 
 
Objective 1: Assess the influence of population dynamics, data quantity, data quality and type on the 
accuracy, precision and cost of estimates from drainage wide (i.e., stock-aggregated) Bayesian state-
space run reconstruction models. We completed this objective as originally planned.  We report on our 
findings related to this objective in Chapter 1 of this report.  The only deviation from the original 
proposed plan was that instead of evaluating the performance of the integrated Bayesian run 
reconstruction/stock-recruitment, we focused instead on just a run reconstruction model.  The 
integrated model was far too complex and slow-running to realistically evaluate its performance relative 
to population dynamics assumptions, data quantity, data quality and type.  We decided it would be 
better to do a thorogh job evaluating the run reconstruction model rather than a parred down 
evaluation of the integrated model.   
 
Objective 2: Evaluate the sensitivity of estimates of productivity, abundance, and management 
quantities (e.g., Smsy) for the Kuskokwim River Chinook salmon stock to adoption of a Bayesian state-
space approach.  We completed this analysis as planned.  The demonstration and sensitivity of the 
integrated model is in Chapter 2 of this report.  We submitted a version of Chapter 2 for peer review in 
the journal Fisheries Research.  We also conducted two additional analyses that were not mentioned in 
the original proposal but fall under this objective.  We investigated the sensitivity of the run 
reconstruction model to assumption regarding data eighting.  This analysis was requested by the 
Kuskokwim Salmon Management Working Group, we we include it here because of its close relationship 
with this project.  We report on tis analysis in Chapter 3.   
 
Objective 3: Conduct exploratory analysis of new Bayesian modeling approaches for telemetric mark-
recapture using the Kuskokwim River Chinook stock as a test case. We completed this analysis as 
originally proposed and report on it in Chapter 4. 
 
Objective 4: Analyze associations between Alaskan Chinook salmon abundance (and Smsy) and drainage 
basin area.   We completed this analysis as originally proposed and report on it in Chapter 5.  
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V. DELIVERABLES 
 
The findings of our project have been and will continue to be disseminated via conference and 
management meeting presentations and peer-reviewed manuscripts.  We have completed six 
presentations, attended three meetings, and submitted one manuscript for peer review publication.  We 
anticipate submitting an additional three to four manuscripts by the end of 2016.  We have also 
submitted with this report all model code for each analysis as appendices at the end of each chapter. 
 
Reports: 
Semiannual progress reports July 2014, January and July 2015, January 2016. 
 
Staton, B. A., M. J. Catalano, and S. Fleischman. 2014. Overview of the Kuskokwim River Chinook salmon 

stock assessment and the application of a Bayesian state-space run reconstruction with integrated 
stock-recruitment productivity.  An preliminary report to the Arctic-Yukon-Kuskokwim Sustainable 
Salmon Initiative. Anchorage, Alaska. 

 
Presentations: 
Staton, B. A. and M. J. Catalano. 2015. Evaluation of a Bayesian state-space stock assessment model for 

Kuskokwim River Chinook Salmon. American Fisheries Society Conference. Portland, Oregon. 
Staton, B. A. and M. J. Catalano. 2015. Development and evaluation of a habitat-based assessment 

model for Alaskan Chinook salmon.  Dauphin Island Sea Lab Graduate Student Symposium. Dauphin 
Island, Alabama. 

Staton, B. A., M. J. Catalano, and S. Fleischman. March 2015. An integrated Bayesian state-space run 
reconstruction for Kuskokwim River Chinook salmon. Kuskokwim River Interagency Meeting.  Bethel, 
Alaska. 

Staton, B. A., M. J. Catalano, and S. Fleischman. 2014. Stock assessment in data-limited situations: using 
run reconstruction with integrated stock-recruitment analysis on Kuskokwim River Chinook salmon.  
Alaska Chapter of the American Fisheries Society Conference.  Juneau, Alaska. 

Catalano, M. J.  September 2014. An overview of uncertainty analysis in salmon management.  
Kuskokwim River Salmon Management Working Group: Escapement Goal Work Session. Bethel, 
Alaska. 

Catalano, M. J. and S. J. Fleischman.  April 2014. Evaluating data limited run reconstruction models for 
Kuskokwim River Chinook salmon.  Kuskokwim River Interagency Meeting. Anchorage, Alaska. 

 
Manuscripts submitted: 
Staton, B. A., M. J. Catalano, and S. J. Fleischman. Submitted May 2016. From sequential to integrated 

Bayesian analyses: exploring the continuum with a Pacific salmon spawner-recruit model.  Fisheries 
Research 

 
Meetings Participated: 
2015 Kuskokwim River Interagency Meeting.  Bethel, Alaska. 
2014 Kuskokwim River Salmon Management Working Group: Escapement Goal Work Session. Bethel, 

Alaska. 
2014 Kuskokwim River Interagency Meeting. Anchorage, Alaska. 
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VI. PROJECT DATA SUMMARY 
 
Our analysis produced simulated data sets and parameter estimates from Bayesian and maximum 
likelihood assessment models.  All model outputs are available upon request from the PI.  
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VII. APPENDIX: SUBMITTED OR DRAFT MANUSCRIPTS 
 

CHAPTER 1 
 

THE PERFORMANCE OF A DRAINAGE-WIDE SALMON RUN RECONSTRUCTION MODEL UNDER 
ALTERNATIVE DATA COLLECTION SCHEMES AND POPULATION DYNAMICS ASSUMPTIONS 

 
ABSTRACT 

Kuskokwim River Chinook salmon abundance is estimated using a drainage-wide run 
reconstruction model.  The model is fitted to aerial survey escapement indices, weir escapement counts, 
harvest estimates, and occasional drainage-wide mark-recapture estimates of total escapement.  The 
performance of this model at estimating drainage-wide escapement (and abundance) has yet to be 
evaluated.  We assessed the performance of the model, in terms of bias and precision of drainage-wide 
escapement estimates, under a range of scenarios that involved different data collection schemes and 
varying assumptions regarding population dynamics.  Different data collection schemes included a range 
of the number of weirs and aerial surveys sampled annually, and the frequency of drainage-wide mark-
recapture total escapement estimates. We also considered the cost of data types to provide guidance on 
their relative efficiency.  In terms of population dynamics assumptions, we assessed the sensitivity of 
model performance to the magnitude of variation in tributary stock contributions to total escapement, 
recruitment variation, and among-tributary correlations in recruitment variation.  As expected, mean 
bias of escapement estimates decreased and precision increased with increasing numbers of aerial 
surveys, weirs, and mark-recapture total escapement estimates.  However, we observed diminishing 
returns with respect to bias and precision with greater than approximately 10 aerial surveys and 6 weirs 
per year, and more than two sets of three-year mark recapture drainage-wide escapement estimates 
per 40 years.  No optimal data configuration was found; for example, similar estimates of bias and 
precision could be achieved by increasing the number of aerial surveys while decreasing the number of 
weirs, and vice versa. Overall, average bias (mean relative error) was <0.06 (6%) and the average CV of 
escapement estimates was <0.1 (10%) across all data scenarios we evaluated.  These values are low 
enough to suggest the the model performed reasonably well at recovering the true escapement 
estimates that were simulated, at least under the range of scanarios we evaluated.  Bias and precision of 
escapement estimates were sensitive to the degree of correlation in recruitment variability among 
tributary stocks, the magnitude of recruitment variation, and precision of drainage wide mark-recapture 
escapement esitmates.  An analysis of the cost of different data types (aerial survey, weir, mark-
recapture), indicated that aerial surveys provide a substaitially greater improvement in the precision of 
escapement esimtate per unit cost than the other data types.  This finding suggests that increasing the 
number of aerial surveys may be a realatively cost effective way to improve escapement estimates, at 
least in the context of this particular run reconstruction model.  We caution that although aerial surveys 
were more cost effective than weirs, our analysis did not consider additional advantages of weirs 
beyond escapement estimation such as their critical importance for collecting age, sex and length data, 
and as a recapture point for tagging studies.  Thus, weirs will likely continue to be an important 
component of any effective data collection scheme into the future.  Although the drainage-wide run 
reconstruction appeared to perform well in our sinmulation, we recommend that the model continue to 
be challenged via simulation to assess how well it performs under additional assumption violations such 
as systematic variation (i.e., temporal trends) in the relative contribution of each tributary to the total 
escapement. 
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INTRODUCTION 
 Monitoring is important for the effective management of exploited fish populations, such as 
Pacific salmon. For example, monitoring provides information on the state of the stock which is 
necessary for state-dependent management (Shea et al. 1998), and when undertaken in an adaptive 
framework can reveal the best management practices (Walters 1986). Furthermore, annual monitoring 
data can provide estimates of salmon spawner abundance and recruitment, which can be used to 
describe population dynamics and set management reference points to guide management goals (e.g. 
Fleischman et al. 2013). Unfortunately, monitoring data are typically expensive and may often be 
inadequate to appropriately inform management (Yoccoz et al. 2002). Thus, many salmon fisheries must 
be managed under information-limited situations (Shotwell and Adkison 2004).  

When information for management is limited, run-reconstruction models that assimilate 
multiple data types can be useful. These models take advantage of the many data sources collected on 
salmon fisheries and are particularly useful when fisheries are new and developing, or when the type of 
data collected varies through time. For example, Shotwell and Adkison (2004) developed a run-
reconstruction model that integrated weir-based escapement estimates, aerial surveys, commercial 
catch, commercial-fishery effort, test-fishery catch per unit effort, and sonar counts to estimate indices 
of total escapement of chum salmon (Oncorhynchus keta)  in the Kuskokwim and Yukon Rivers. Bue et 
al. (2012) extended this model for Kuskokwim River Chinook salmon and incorporated periodic total 
escapement estimates (based on tagging experiments) to scale the model to estimate total run size and 
total escapement for the entire time series of the Kuskokwim Chinook stock complex.  
 Tributary-escapement estimates (e.g. weir projects and/or aerial surveys) and periodic 
estimates of total drainage-wide escapement (e.g. mark-recapture estimates) are the major data 
sources that stock-reconstruction models rely on for many salmon fisheries, such as Kuskokwim River 
Chinook and Yukon River Chinook and chum salmon (Bue et al. 2008, Bue et al. 2012, Schaberg et al. 
2012). All of these data types may be required for effective salmon management when management 
objectives include both tributary and drainage-wide escapement goals. However, each data type 
contributes different information to the drainage-wide run reconstruction and incurs different collection 
costs. For example, tributary escapement estimates based on weir counts or aerial surveys can provide 
information on specific sub-stocks, but can also represent indices that describe trends in drainage-wide 
escapement (e.g. Shotwell and Adkison 2004). The degree to which tributary escapement estimates can 
index drainage-wide escapement patterns for the entire stock complex will depend in part on the 
proportion of the total escapement counted by the weirs or aerial surveys, the inherent similarity in 
temporal patterns in abundance among tributary escapements (i.e. among-stock correlation) and the 
magnitude of observation error associated with the counts. For example, if temporal patterns in 
abundance among sub-stocks are perfectly correlated, then counts from one tributary will act as a 
perfect index of all other tributaries and, thus, the entire stock complex. Alternatively, if temporal 
patterns among sub-stock demonstrate little to no correlation and/or the observation error is high, a 
greater number of tributaries will require weir counts or aerial surveys before the cumulative counts will 
index the drainage-wide escapement effectively. 
 In contrast to tributary escapement estimates, drainage-wide escapement estimates such as 
those derived from tagging studies (e.g. Schaberg et al. 2012) provide information about the total 
escapement on the years that these data are available and provide a scaling factor for tributary 
escapement estimates when jointly incorporated into a run-reconstruction model. The ability of the 
drainage-wide abundance estimates to support inference about total run size and escapement will 
depend on the magnitude of sampling error; however, unlike tributary escapement estimates, drainage-
wide abundance estimates are insensitive to the proportion of the total escapement that each tributary 
represents and insensitive to among-stock correlation. Because of these data complexities, determining 
the most efficient sampling design for run reconstructions can be unclear.  Moreover, the influence of 
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among-stock correlations in temporal patterns in productivity is important to consider in assessing the 
model performance in the context of different sampling designs. 

In this chapter we investigate the relative value of weir-based escapement estimates, aerial-
survey escapement indices and mark-recapture total abundance estimates for informing a run 
reconstruction model used for management of the Kuskokwim River Chinook salmon (Oncorhynchus 
tshawytscha) fishery in Alaska, USA. Our objectives were to describe the relative influence of each data 
type on measures of bias and precision of abundance estimates generated from the stock-
reconstruction model.  Thus, the analysis will assess the performance of the drainage-wide 
reconstruction model while at the same time providing guidance on efficient sampling designs.  We are 
unaware of any previous studies that have evaluated these sampling design issues. Understanding the 
interplay of these data types for reconstructing total run size for salmonids will allow management 
bodies to make better decisions about allocating limited resources to inform the management of these 
highly valued and often contentious fisheries. This study was motivated by uncertainty over appropriate 
monitoring of Chinook salmon on the Kuskokwim River, but the rationale and methodological approach 
can be generalized to any fishery that reconstructs management reference points from combinations of 
tributary escapement estimates and total run size estimates of semelparous populations. 
 

METHODS 
 We used a Monte Carlo simulation frame work to understand the performance of a drainage 
wide run reconstruction for Kuskokwim River Chinook Salmon and the relative value of weir-based 
escapement estimates, aerial-survey escapement indices and mark-recapture total escapement 
estimates to the assessement.  The simulation contained three main components: 1) a model describing 
patterns in abundance of a Chinook salmon multi-stock complex that is parameterized to mimic 
Kuskokwim River Chinook salmon (termed process model), 2) a model describing the data generating 
process for weir projects, aerial surveys and mark-recapture total escapement estimation (termed 
observation model), and 3) a statistical stock-reconstruction model that combines the multiple data 
types into a unified analysis that estimates the total annual run size and escapement (termed statistical 
model). The first two components (process and observation models) were used to generate simulated 
data sets that we then analyzed with the stock-reconstruction model (statistical model). Total 
escapement estimates were then compared to the true values that they were simulated under to 
evaluate the bias and precision of annual escapement estimates. We repeated this procedure under 
different sampling designs and stock characteristics to reveal potential underlying relationships between 
sampling designs, sub-stock characteristics, and reconstruction model performance.   
 We parameterized our simulation to mimic the monitoring of Chinook salmon on the 
Kuskokwim River. Monitoring of the Chinook salmon run on the Kuskokwim River has occurred since 
1976. The amount of data and type of data collected has varied through time and has included harvest 
information, age information, and run size and escapement information. For this study, we were 
interested mainly in weir-based tributary-escapement estimates, aerial-survey tributary escapement 
indices and total escapement mark-recapture abundance estimates because these are the data types 
most likely to be effected by changes in budgetary limitations. Each of these data types have been 
collected sporadically since 1976, with a general increase in weir-based escapement estimates through 
time. Over the time period of 2004-2013 approximately 6 tributaries per year have received weirs (range 
= 0 to 6) and 10 tributaries per year have received aerial surveys (range = 2 to 14). Total escapement 
mark-recapture abundance estimates have only been generated for the years of 2003-2007 and 2014. 
All of these data have been used annually to reconstruct the total drainage-wide Chinook salmon run, 
forecast future run size, and set harvest goals with the reconstruction model developed by Bue et al. 
(2012). 
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Simulation process model 
We simulated multiple Chinook salmon sub-stock sampling units (i.e. section of river containing 

a semi-independent group of returning spawning fish) of a multi-stock complex by first specifying a total 
number of recruits (R0) at the first time step for the entire complex and apportioning them to each sub-
stock sampling unit as jj PRR 0,0 = . The parameter Pj was a vector of proportions (that summed to one) 
drawn from a Dirichlet distribution. The values of R0,j represented the carrying capacity of each sub-
stock unit. The Dirichlet distribution was parameterized with a concentration parameter ( Dα ) that 
controlled the variation in Pj and, thus controlled the variation in the carrying capacity among sub-stock 
units. We then described the population dynamics of sub-stocks using an age-structured Ricker stock-
recruitment model similar in structure to Hamazaki et al. (2012) and Fleischman et al. (2013). Our model 
described the recruitment of each brood year (i) of each sub-stock (j) returning to spawn as Ricker stock-
recruitment model modified to account for correlation in recruitment variability among sub-stocks 
through time. The model was specified as: 
 

( ) jijijij S
jiji eSR ,,1,

,,
ejνβα ++− −=  (1) 

 
where Si,j is the escapement of spawners at time i for sub-stock j. The parameters α and βj are the 
standard Ricker curve parameters describing a dome-shaped relationship between recruitment and 
spawning-stock numbers. The parameter εi,j represents an error structure that is correlated among sub-
stocks to model non-independence in recruitment variation among sub-stocks. The error structure εi,j 

was modeled as random draws from a multivariate Normal distribution with a mean of zero and a 
variance-covariance matrix generated by a specified correlation coefficient ρ and standard deviation 

εσ . The parameter φ represents the within-sub-stock time series correlation in stock-recruitment 
residuals (i.e., log scale residual deviation between the realized and expected recruitment) to represent 
environmental influences that persist from year to year. The recruitment residual vi-1,j  was calculated as: 
 

( ) ( )( )jij S
jijiji eSR ,

,,, loglog βαν −−=  (2) 

 
where the first term )log( , jiR  represents the observed recruitment and the second term  

( ))log( ,
,

jij S
ji eS βα −  represents the predicted recruitment from the deterministic Ricker model.  

 Because the rate of maturation among individuals is variable, the number of adults returning to 
spawn each calendar year is composed of a proportion of fish from different brood years (i.e. ages). We 
accounted for this variation by predicting the number of returns-at-age as: 
 

jkikkji RPN ,,, −=  (3) 

 
where k indexes the age of returning fish and Pk represents the expected proportion of each stock 

returning to spawn at age k. Thus, ∑=
k

kjiji NN ,,,  represents the number of returning spawners of 

each sub-stock j at each calendar year i. Finally, the escapement for each calendar year was predicted 
as: 
 

( )ijiji UNS −= 1,,  (4) 
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where the parameter Ui is the finite annual exploitation rate.  The input parameters of the process 
model and definitions are reported in Table 1.  
 
Simulation observation models 
 Our primary interest was weir-based escapement estimates, aerial-survey escapement indices 
and mark-recapture abundance estimates. We simulated tributary escapement estimates for weir-based 
surveys as random draws from negative binomial distributions with mean equal to Si,j and over 
dispersion parameter (odw) equal to 10,000 (approximately Poisson variation) because we expected little 
bias and variation in true weir counts (Jones et al. 1998, Bue et al. 1998). Simulated weir projects were 
limited to sub-stock sampling units with an average annual escapement greater than the lowest value 
observed in the Chinook salmon escapement data for weirs (i.e. ~400). We simulated tributary 
escapement indices for aerial-based surveys as random draws from negative binomial distributions with 
a mean and specified over dispersion parameter (oda) to account for additional sampling error. To 
account for bias in aerial-based counts, we specified the negative binomial mean as jiji S ,, 27.0=λ . 
This formula describes systematic negative bias in the salmon counts that is constant across values of 

jiS , . We determined this relationship from paired weir and aerial-survey counts of Chinook salmon in 
the Kuskokwim drainage conducted by Alaska Department of Game and Fish (ADFG unpublished data, 
Appendix A). We limited the range of sub-stock sampling units available for aerial surveys to those with 
an average annual escapement between 180 and 18,000. This range approximated a range of average 
annual aerial-based escapement estimates from 150 to 2,800, which is the range observed in the 
Chinook salmon escapement data for aerial surveys. Total escapement mark-recapture abundance 
estimates were specified by drawing random numbers from log-Normal distributions with mean equal 
to the total escapement (i.e. ∑=

j
jii SS , ) for year i and specified coefficient of variation. Age data 

were simulated as random draws from a multinomial distribution with trials equal to the number of fish 
aged and a specified proportion of each age in the sample. 
 
Assessment model 
 We analyzed the simulated datasets with a simplified Bayesian formulation of a stock 
reconstruction model developed by Bue et al. (2012). The model utilizes multiple data types to estimate 
the total escapement for the Kuskokwim drainage. For this study, we limited the input data for the 
model to only include weir-based escapement estimates, aerial-based escapement indices and total 
escapement mark-recapture abundance estimates. These are the primary data informing the model and 
the data types of interest for this study. Details on the model and likelihood formulation can be found in 
Bue et al. (2010). We formulated the model in a Bayesian context to facilitate the natural estimation of 
parameter uncertainty. Posterior probability distributions of model parameters were estimate using a 
Monte Carlo-Markov chain algorithm implemented in JAGS (Plummer 2003). We called JAGS from within 
program R (R Development Core Team 2010) with the library RJAGS (http://mcmc-jags.sourceforge.net). 
Model code and details on the estimation procedure can be found in Appendix B. 
 
Simulation inputs 
 Parameter input values were taken from the literature and specified to mimic the observed 
variation in the available data and capture the relevant biological and sampling characteristics of the 
stocks such as among-stock correlation, variation in the relative abundance across stocks, and the mean 
percent of the total escapement counted with one sample unit (i.e. aerial survey or weir project). All 
parameter inputs, definitions, and sources of their values are reported in Table 1. Some parameter 

http://mcmc-jags.sourceforge.net/
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inputs values were not easily determined from the literature or existing Kuskokwim River Chinook 
salmon data. These parameters include the number sub-stock sampling units available for escapement 
counts (J), the Dirichlet concentration parameter ( Dα ) controlling the variation in carrying capacity 
among sub-stocks sampling units, and the correlation in the recruitment among sub-stocks sampling 
units through time ( ρ ). To determine the most appropriate values of these inputs, we devised a 
systematic model calibration procedure to determine the combinations of input parameter values that 
produced simulated data sets of similar character to the observed Kuskokwim Chinook salmon 
escapement data and were within biologically realistic bounds. Further details on the model calibration 
procedure is reported in Appendix C. 
 
The simulation 
 We simulated data sets from a range of designs that included all combinations of different 
annual numbers of weir projects and aerial surveys in combination with different periodicities of total 
escapement mark-recapture abundance estimates. We evaluated a range of 1-10 annual weir projects, 
2-20 aerial surveys, and 3 consecutive total escapement mark-recapture abundance estimates with 
intervals of 3-17 years between them. The sample numbers and periodicities were selected to include a 
realistic range of designs informed by Alaska Department of Fish and Game personnel. For each design, 
sub-stocks to be sampled with a weir or aerial survey were selected randomly from those within the 
defined appropriate abundance range. For each combination of design elements, we simulated 500 data 
sets, estimated the total escapement (Appendix B), and estimated the mean relative error, absolute 
relative error, the average precision (CV) of the annual total escapement estimates, and cost of the 
sampling program.  
 
The mean relative error (MRE) of the escapement estimates was calculated as: 
 

I
S
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(5) 

 
 
and the absolute relative error (ARE) of the escapement estimates was calculated as: 
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where iŜ is the estimated total escapement at time i, Si is the true total escapement at time i, and I is 
the number of years of the time series. The average precision of the escapement estimates was 
calculated as the average coefficient of variation (CV) of the estimates as: 
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where 
iŜσ is the standard deviation of the total escapement estimate ( iŜ ). We approximated costs of 

each sampling design as the sum of the costs of each data type. The per-unit cost of weirs was 
approximated as $150,000 USD, the per-unit cost of aerial surveys was approximated as $1,500 USD, 
and the per-unit cost (3-year project) of an total escapement mark-recapture abundance estimate was 
approximated as $400,000 USD (Liller per com). For simplicity, we did not include the additional cost of 
initiating new projects. Thus, these costs assume that the infrastructure necessary to the collect the 
data is in place.  
 
Sensitivity analyses 

For a subset of the input parameters, including those that could not be informed directly from 
the analysis of available data (Appendix B, this report) or from the literature, we conducted two 
sensitivity analyses. The first sensitivity analysis was designed to reveal which parameters most 
influenced the ARE and precision (CV) of the simulation outputs (e.g. Allen and Gwinn 2012). The second 
sensitivity analysis was designed to reveal the input parameter values that would result in a change in 
our general conclusion; thus, shedding light on the robustness of our general results. We performed 
these analyses on the standard deviation describing the random variation in the stock-recruitment 
relationship ( εσ ), the Dirichlet concentration parameter ( Dα ) controlling the variation in carrying 
capacity among sub-stock sampling units, the correlation in recruitment among sub-stock sampling units 
( ρ ), the correlation in the recruitment residual through time (φ), the negative binomial over-dispersion 
parameter describing sampling error for weir projects (odw), the negative binomial over-dispersion 
parameter describing sampling error for aerial surveys (oda), and the assumed coefficient of variation of 
the total escapement mark-recapture abundance estimates (MRCcv), describing mark-recapture 
sampling error. 

The first sensitivity analysis was designed to elucidate the relative influence of different 
parameter inputs on our simulation outputs (i.e. MPE, ARE and CV). We performed the analysis with a 
fixed reference sampling design of six annual weirs, 10 annual aerial surveys, and three consecutive 
years of total escapement mark-recapture abundance estimates every two decades to represent a 
reference sampling design similar to sampling over the terminal decade in the Kuskokwim River data set. 
First we evaluated the MPE, ARE and CV resulting from the reference design with input parameter 
values specified in Table 1. We then changed each input parameter by 20% and evaluated any changes 
in the mean MPE, ARE and CV of the resultant total escapement estimates generated from the 
assessment model. A total of 500 data sets were generated for each scenario to determine the average 
influence of each input parameter. 

The second sensitivity analysis was designed to reveal the dependency of the value of each data 
type (i.e. influence on CV per cost) on the input parameters. We performed this analysis by comparing 
the change in CV relative to the change in cost between three sampling designs and a default design 
across a range of values of each input parameter. The default design was specified to approximate a 
minimal design, which consisted of one weir per year, two aerial surveys per year, and a total of three 
consecutive annual total escapement mark-recapture estimates for the entire 40-year time trajectory. 
We then specified three alternative designs to compare the change in CV per change in cost of data 
collection. For the first alternative design, we increased the number of weirs from one per year to 10 per 
year; for the second, we increased the number of aerial surveys from two per year to 20 per year; and 
for the third, we increased the number of 3-year total escapement mark-recapture projects from one to 
four over the 40-year time trajectory. We performed this design comparison for values of oda from 1 to 
500, for values of odw from 1 to 10,000, for values of ρ from 0.5 to 0.9, for values of φ from 0.1 to 1, 
and for values of Dα  from 0.01 to 100. We chose each range of input parameters such that realistic 
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values were contained within the range. For example, the correlation among sub-stock sampling units (
ρ ) is 0.52 for the observed escapement indices indicating that the true correlation must be greater 

because of error in the observation process. Alternatively, correlations higher than 0.7 are rarely 
reported in the literature. Thus, the range of 0.5 to 0.9 likely spans the true correlation of the sub-stock 
units. The range of Dα  was specified to include conditions where nearly all of the total carrying capacity 
of the stock complex was represented by a few sub-stock sampling units (i.e. 0.01) to unrealistically 
similar carrying capacity across stocks (i.e. 100). The range of φ represents a correlation in the 
recruitment residuals from year to year of nil to perfect correlation. We evaluated a range of the 
standard deviation of the recruitment residual εσ from 0.1 to 1.5. When the structural assumption is 
made that the sub-stocks sampling units behave as a single stock, the estimated value of εσ is ~0.28 
(Appendix B, this report). This represents a minimum expected value because estimating εσ under the 
false assumption of perfectly correlated population dynamics will serve to underestimate the 
parameter. Alternatively, a value higher than 1.5 is unexpected based on observations of stock 
recruitment relationships of Pacific Salmonids (Myers et al 1999, Goodwin et al 2006). 
 

RESULTS 
General simulation results 
 Our simulations indicated that bias (MRE and ARE) and precision of escapement estimates were 
related to the amount of each data type in the sampling design.   The MRE and ARE decreased and CV 
increased with increases in mark-recapture years, weir projects, or aerial surveys (Figure 1).  The 
average parameter bias (MRE) was less than 0.06 (6%) for all scenarios and was 0.01 (positive or 
negative) so long as at least 10 air surveys and 6 weir projects were operating, and at least two sets of 
three-year mark recapture total escapement estimates were done over the fourty-year time horizon.  
Similarly, the absolute relative error did not exceed 0.05 (5%) under these same scenarios.  The average 
CV of escapement estimates was less than 0.1 (10%) across all scenarios and was less than 0.05 so long 
as at least 10 air surveys and/or 6 weir projects were operating and at least two sets of three-year mark 
recapture total abundance estimates were done over the fourty-year time horizon.  Similar CVs could be 
achieved by increasing the number of air surveys and decreasing the number of weirs, or vice versa. For 
example, the average CV was 0.05 under 16 air surveys and one weir or one air survey and six weirs, if 
two sets of three-year mark recapture escapement estimates were conducted. 

The impact of each data type on the MPE, ARE, and coefficient of variation (CV) of escapement 
estimates demonstrated a saturating effect, where the change in these quantities declined as the 
number of sample units of each data type increased. This is most easily observed on Figure 1 where the 
isopleths become further apart as the number of weir projects or aerial surveys increase. Although 
harder to observe on Figure 1, this pattern was also true for mark-recapture (MRC) projects. This 
saturation effect suggests that there is diminishing returns in terms of reducing parameter uncertainty 
and bias as more and more escapement indices are added.  

  Figure 1 also indicates that there was no optimal ratio of weir to aerial survey projects where 
the bias and precision per total sampling units would be optimized. This is indicated by the nearly 
straight and parallel isopleths on the contour plots of Figure 1. Similarly, the parallel nature of isopleths 
of Figure 1 also indicates that the relative value of weir projects and aerial surveys is constant across 
sampling designs. For example, a similar change in the CV (approximately 0.042 to 0.039) can be 
achieved by adding two weir project per year, five aerial surveys per year, or one 3-year MRC project to 
the 40-year time series. However, from the perspective of cost, these design alterations were drastically 
different. Increasing the sampling design by an additional 3-year mark-recapture experiment, two 
additional weir project per year, or five additional aerial survey per year increased the 40-year cost of 
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the data collection by $1.2 million, $12 million, or $0.3 million, respectively. Thus, on a per-cost basis, 
aerial surveys had the greatest influence on the bias and precision of the abundance estimates and weir 
projects had the least influence within the range of designs explored. 
 
Sensitivity analysis results 
 Our first sensitivity analysis was designed to investigate the relative influence of our input 
parameter values on the AREE and CV outputs. This analysis demonstrated that there was more 
variation around the ARE than CV outputs, indicating that CV was more sensitive metric. Otherwise, we 
found that the relative influence of the input parameters on the CV was similar in pattern to their 
influence on the ARE. We found that the ARE and CV were most sensitive to the input values of ρ , εσ , 
and MRCcv (Figure 2). We observed a small influence of oda and no observable influence of φ, Dα , and 
odw (Figure 2). 
 Our second sensitivity analysis was designed to investigate the robustness of our conclusions 
about the relative influence-per-cost of each data type to input parameter values. The results of this 
analysis corroborated fairly well with the results of the first sensitivity analysis. This analysis clearly 
indicated that the relative value of each data type did not depend on our assumption of the values of φ 
and Dα (Figure 3). This was also true for odw values between ~200-10,000; however, below values of 
200, the reduction in the CV due to changes in the number of aerial surveys became stronger (Figure 3). 
The value of the input parameters, ρ , εσ , and MRCcv had a clear influence on the relative value of the 
data types. When the correlation among sub-stock sampling units ( ρ ) was increased the relative value 
of both weirs and aerial surveys decreased (Figure 3). This was an especially strong response for aerial 
surveys. When we increased the random variation in recruitment, εσ , the opposite response occurred, 
i.e., the relative value of weirs and aerial surveys increased. Increasing the assumed precision of the 
total-escapement MRC abundance estimates (i.e. a decrease in MRCcv) decreased the relative value of 
aerial surveys and increased the relative value of weirs (Figure 3). Although, the assumed values of some 
of the input parameters influenced the relative values of each data type, they were never influenced to 
a degree that would change the general conclusion that aerial surveys are the most cost-effective 
sampling method. This was indicated in Figure 3 by the red line, representing the change in CV per 
change in cost for aerial surveys, never crossing either the black or green lines. Thus the aerial surveys 
were the most cost effective data type across all parameter input values evaluated, indicating this as a 
robust result. 

 
DISCUSSION 

 Here we demonstrate the high relative value of aerial surveys for informing the run abundance 
reconstruction model for Chinook salmon on the Kuskokwim River. We found that, per cost, aerial 
surveys outperformed both weir projects and total-escapement MRC abundance estimates for 
increasing the precision of total escapement estimates. We also found that weir projects demonstrated 
the lowest information value per cost. These are important findings because they can help managers 
decide how to allocate funds to achieve the best information within fiscal limitations. Furthermore, our 
results can help to guide the addition or subtraction of data collection efforts as budgets fluctuate, 
ensuring the best use of limited funding.  
 Our general findings are in contrast to commonly held perceptions about the relative data 
quality of aerial surveys and weir counts. The efficacy of aerial surveys is typically thought to be low, 
because the technique is affected by many factors, such as observer experience, water clarity, water 
depth, surface wind, cloud cover, angle and intensity of sun (Chapman 1986, Swan 1989, Bue et al. 
1998). Aerial surveys are also known to be systematically biased low because of an imperfect ability to 
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observe all fish present (Jone 1998, Bue et al. 1998). Alternatively, weir counts, which are less sensitive 
to environmental variables (Bue et al. 1998), are typically considered a more valuable data type for 
informing management. 

Our results suggest that this general perception may not hold for the specific case of the 
Kuskokwim Chinook salmon abundance reconstruction model. Our finding is primarily a consequence of 
the large difference in monetary cost of aerial surveys compared to alternative data types. For example, 
the cost of a weir project per year is approximately 100 times the cost of an aerial survey; thus, the 
influence of the weir counts on the CV would need to be approximately 100 times the influence of the 
aerial surveys on the CV for the data types to be approximately equivalent.  By contrast, we found that 
approximately one weir project demonstrates only twice the influence on the CV than one aerial surveys 
on average.  The relatively high precision of weirs at estimating escapement abundance may have been 
lost due to how they are used in the model.  In this case, the weirs were used in a similar manner as the 
air surveys in the model, that is, as an index of escapement abundance rather than a measure of the 
absolute magnitude of escapement.  The weirs are used as an index because of the large amount of 
uncounted escapement in the drainage.  The scaling of escapement in the model comes from the 
periodic drainage-wide escapement estimates via mark recapture studies. Thus a given weir counts 
some unkown fraction of the total escapement and therefore no matter how precise, the estimate will 
only inform relative changes in escapement over time rather than the absolute magnitude of 
escapement.   
 Our simulation revealed that the aforementioned result was robust to the value of input 
parameters despite model sensitivity to some input parameters. For example, we found that model 
outputs were most sensitive to the assumed level of random variation in recruitment ( εσ ) and 
correlation in recruitment among sub-stocks ( ρ ). These findings are consistent with our a priori 
expectation that the value of additional tributary escapement estimates would decline as the correlation 
among stocks increased and the random variation in the recruitment process decreased. This occurs 
mainly because the ability of one tributary to index the total escapement increases when the correlation 
is high and noise is low; thus, sampling additional tributaries becomes less informative. Additionally, the 
assessment model assumes that the sub-stocks conform to a single population dynamics model (in other 
words, perfect correlation among sub-stocks). Thus, generating data from highly correlated sub-stocks 
with little variation would better meet to this model assumption, likely increasing both the accuracy and 
precision of the model estimates. Alternatively, that the assumed CV of the drainage-wide MRC 
escapement estimates influenced the value of tributary escapement estimates was unexpected. 
However, this outcome also makes sense given the role of this information as a scaler in the assessment 
model, i.e. the more accurate and precise the information on the drainage-wide escapement the more 
accurate and confident the reconstruction.   
 Models in ecology are not intended to be exact replicas of reality, but simplifications that allow 
us to understand and predict complex processes. While model complexity can be limitless, the most 
useful models are those that incorporate only enough complexity to meet research and management 
objectives. In this study, we modelled only the aspects of population dynamics and sampling process 
important for understanding the relative value of different data types on estimates of total salmon 
escapement; thus, our results have several limitations worth discussing. First, our simulation assumes 
that error in the tributary escapement estimates and MRC estimates is random and does not vary in any 
systematic way through time. However, if observer efficiency systematically changes through time 
because of changing weather patterns, river characteristics, or salmon abundance, we would expect a 
systematic trend in bias in the aerial-survey based escapement estimates. This would introduce bias into 
the assessment model and reduce the relative value of the aerial-survey information. We would expect 
an analogous effect for weir projects and MRC projects. Second, our analysis did not consider the value 
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of the data types for other uses. For example, we did not consider the value of each data type for 
determining if tributary-based escapement goals are met. Clearly, the more pecise weirs would serve 
this purpose better than air surveys.  Nor did we consider the value of the information derived by 
handling fish during weir projects such as age and length information, as recapture points for mark-
recapture studies. Managers will need to carefully consider these advantages of the wiers when making 
decisions on allocation of resources for surveys.  Because of these additional advantages that we did not 
consider, weirs will likely continue to be an important type of survey to inform management of 
Kuskokwim Chinook and other species.  A third important caveat is that several important population 
dynamics parameters of the operating model were not well informed by data.  For example, we did not 
have good estimates of ρ (among stock correlation in recruitment variation over time).  Thus we used an 
intensive model tuning exercise to evaluate which values of ρ could have plausibly produced the existing 
time series of data from the Kuskokwim Chinook salmon stock.  We believe that our tuning exercise was 
a reasonable approach in the absence of better information, but we also acknowledge that future 
analyses would be improved if better estimates of these parameters could be obtained.  The current 
AYKSSI-funded project looking at harvest diversity (Connors, Coggins, Walters, and Fleischman) may in 
fact produce estimate of at least some of these important population dynamics parameters, particularly 
ρ.   

Another important assumption of the model is that each tributary contributes the same 
proportion of the total escapement, on average, over time.  This assumption would be violated if some 
tributary stocks vary systematically over time due to natural causes thereby causing a shift in their 
contribution to the total escapement.  This type of assumption violation was not evaluated in our 
analysis and should receive attention in future analyses.  This assumption may also be violated if the 
relative harvest rates across tributary stocks changes over time.  For example, a reduction in harvest 
rates on early running up-river stocks may increase the relative contributons of these stocks to the total 
escapement.  This scenario may be playing out in recent years as severe subsistence harvest restrictions 
have apparently increased escapement to up-river tributaries.  Thus, although our analysis suggests that 
parameter bias is low, we caution that these findings may not hold up as we further challenge the model 
with plausible additional assumption violations. 
 The sampling program for Kuskokwim Chinook has generally resulted in an average of 10 aerial 
surveys and 6 weirs being sampled annually, and three to six mark recapture estimates of total 
drainage-wide escapement per 40 year time series.  Our analysis suggests that adding more of these 
sampling projects is unlikely to appreciably increase parameter precision and decrease bias.  However, 
our findings do suggest that similar levels of bias and precision could be achieved at less cost by 
increasing the number of air surveys while decreasing the number of weirs.  However, doing so would 
come at the cost of loss of information on age, sex, and length data, not to mention loss of recapture 
sites for tagging studies.  We caution that our analysis did not quantify the value of these additional 
wier-based data streams on the assessment and management activities for this stock.  
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Table 1. Parameter input values, definitions and sources for the simulation model.   
 
Symbol Value Definition  
Process Model 

0R  210,000 2 The total recruitment across sub-stocks at time zero 

J 70 1 The total number of sub-stock units, i.e. tributaries or tributary segments 
that could potentially be sampled with a weir or aerial survey.  

α  5.49 2 parameter of Ricker stock-recruit model 

jβ  jR ,0)log(α  parameter of Ricker stock-recruit model 

k  4, 5, 6, 7  The ages of fish returning to spawn 

kP  0.20, 0.39, 0.38, 
0.03 4 The expected proportion of fish of different ages returning to spawn ( k ) 

ρ  0.80 1,5,6 Expected correlation among sub-stock recruitment through time 

ϕ  0.85 2 Expected correlation in recruitment among consecutive time steps for 
each sub-stock 

εσ  0.60 8,9 Process error around the stock-recruitment model 

Dα  0.25 1 The Dirichlet concentration parameter that controls how R0 is apportioned 
among sub-stocks 

U  0.4 2 Finite annual exploitation rate of fishery 
Aerial Survey Model 

aod  40 2,3,4 Negative binomial over-dispersion parameter of aerial surveys 

wod  10,000 3,4 Negative binomial over-dispersion parameter of weir counts (set to mimic 
Poisson variation) 

In-River Mark-Recapture Model 
MRCcv 15% 7 Coefficient of variation of the mark-recapture abundance estimates 
1 Appendix C 
2 Chapter 2 (this report) 
3 Jones et al. (1998) 
4 Bue et al. (1998) 
5 Mueter et al. (2002) 
6 Peterman and Dorner (2012) 
7 Bue et al. (2000) 
8 Mertz and Myers (1996) 
9 Maunder and Deriso (2003) 
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Figure 1. The mean absolute relative error (ARE), coefficient of variation (CV), and mean relative errir 
(MRE) of total-escapement estimates as a function of the number of weirs (x axis) aerial surveys (y axis) 
and three-year mark-recapture drainage-wide escapement projects (per 40 year time horizon).  The red 
dots indicate recent sampling aerial survey and wier sampling intensity. 
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Figure 2. Mean absolute relative error (ARE; top panel) and coefficient of variation (CV; bottom panel) of 
annual escapement estimates with default model input parameter values (‘default’) and after a 20% 
decrease in model input parameters. 
  

default default 

default 
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Figure 3. The change in the average coefficient of variation of annual escapement estimates per cost 
(ΔCV/ΔCost) when increasing a sampling design from 2 to 20 annual aerial surveys (red line), 1 to 10 
annual weir projects (green line) and 1 to 4 3-year mark-recapture projects (black line) with a range of 
model parameter input values. More negative values on the y-axis represent greater reductions in the 
CV per cost and thus a greater value. 
  



26 
 
 

Appendix A. Methods for determining systematic bias in Chinook salmon aerial survey counts. 
 

Research conducted on Pacific salmon species, such as pink salmon (Oncorhynchus gorbuscha), 
indicate that aerial surveys can be negatively biased and the bias can be related to fish abundance (e.g. 
Jones et al. 1998); however, we are unaware of any published research determining the expected bias 
and variation of Chinook salmon counts conducted from aircraft. The purpose of the following analysis 
was to determine the expected bias and describe its relationship to the true abundance of Chinook 
salmon in the Kuskokwim River drainage. 
 
Data source 

To determine the expected bias of aerial survey counts and its relationship to true abundance, 
we utilize available salmon counts from weirs and aerial surveys that were conducted on the same 
tributaries. We obtained weir-count and aerial-count data from the ADFG data portal (website). A total 
of 34 paired weir/aerial counts from five different tributaries were available (Table A1). 
 
Analysis 
 We assumed that weir-based salmon counts closely represented the true tributary escapement. 
Thus we evaluated the bias of aerial surveys relative to the weir counts. We calculated the bias of each 
aerial survey as, ( ) weirweiraerial CCCBias −= , where C represents the count derived from either weir 
or aerial surveys. We assumed that the Bias across surveys could be explained by a normal distribution 
were the mean was models as: 
 

( )weirCe ψwµ −−= 1  
 
Where W represents the asymptotic proportional bias and psi models its relationship to Cweir.  
We described the relationship between the bias of aerial counts and abundance 
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Table A1. List of paired weir and aerial counts for five tributaries of the Kuskokwim River. 
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Figure A1. Proportional bias of aerial survey Chinook salmon counts as a function of weir counts from 
paired aerial survey-weir counted tributaries of the Kuskokwim River. 
 

 
 
Figure A2.  Aerial survey counts as a function of weir counts. 
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Appendix B. Estimation model and fitting procedure. 
 

Posterior probability distributions of model parameters were estimate using a Monte Carlo-
Markov chain algorithm implemented in JAGS (Plummer 2003). We called JAGS from within program R 
(R Development Core Team 2010) with the library RJAGS (http://mcmc-jags.sourceforge.net). All prior 
distributions were standard uninformative distributions specified to have no influence on the posterior 
probability distributions. Priors for log-scale parameters (i.e., returning spawners N and tributary 
expansion parameters k) were set as flat normal distributions with mean equal to zero and standard 
deviation equal to one hundred. Priors of inverse standard deviation parameters were specified as flat 
gamma distributions with shape parameters set to 0.01 and were verified to not influence the range of 
the posterior distributions. Inference was drawn from 4,000 posterior samples taken from 2 chains of 
20,000 samples,each, thinned to every 10. We allowed a burn in of 20,000 samples to remove the 
effects of initial values. Convergence was diagnosed by using the Gelman-Rubin statistic (with values < 
1.1 indicating convergence; Kéry 2010, Gelmin et al. 2004). 

 
Gelman, A., Carlin, J.B., Sterns, H.S. & Rubin, D.B. (2004) Bayesian Data Analysis. Chapman and Hall, 

Boca Raton. 
Kery, M. (2010) Introduction to WinBUGS for Ecologists: Bayesian approach to regression, ANOVA, mixed 

models and related analyses. Academic Press. 
Plummer, M. (2003) JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. 

Proceedings of the 3rd International Workshop on Distributed Statistical Computing (eds F. 
Leisch & A. Zeileis). Vienna, Austria. 

R Development Core Team (2010) R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 

 
JAGS model code for simplified version of stock reconstruction model developed by Bue et al. (2012) 
 
model{ 
##set priors; looped priors are in 
#other loops for efficiency## 
  mushape ~ dnorm(0,.01)I(-2,6) 
  taushape ~ dgamma(.01,.01) 
  for(i in 1:ns){ 
  logshape[i] ~ dnorm(mushape,taushape) 
  shape.esc[i] <- exp(logshape[i]) 
  } 
 
#estimating total escapement 
  for(y in 1:ny){ 
    log.N[y]~dnorm(0, 0.01) 
    N[y]<-exp(log.N[y]) 
    S[y]<-N[y]-catch.tot[y] 
    U[y]<-catch.tot[y]/N[y] 
  } 
 
#estimated escapement for each trib 
  mulogk~dnorm(0,0.01) 
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  taulogk~dgamma(.01,.01) 
  for(j in 1:ns){ 
    log.k[j]~dnorm(mulogk, taulogk) 
   for(y in 1:ny){ 
    k[y,j]<-exp(log.k[j]) 
      est.esc[y,j]<-(S[y]/k[y,j]) 
      rate.esc[y,j]<-shape.esc[j]/est.esc[y,j] 
      lambda[y,j]~dgamma(shape.esc[j], rate.esc[y,j]) 
      esc[y,j]~dpois(lambda[y,j]) 
      qweir[y,j] <- lambda[y,j]/N[y] 
    } 
  } 
#in river likelihood 
  for(i in 1:nmrc){inr.n[mrcvec[i]]~dlnorm(S[mrcvec[i]], tau.inr[mrcvec[i]])} 
} 
  



31 
 
 

Appendix C. Parameter input values and model calibration. 
 
Model calibration methods 
 Because the exact values for three of the parameter inputs could not easily be determined from 
the literature or available data, we devised a systematic model calibration procedure to determine the 
combinations of values that were both biologically realistic and produced simulated data sets of similar 
character to the observed Kuskokwim Chinook salmon escapement data. The procedure involved 
simulating 500 data sets from each of all possible combinations of a biologically realistic range of the 
three inputs parameters, calculating three metrics describing the simulated data, comparing these 
metrics of the simulated data to the metrics of the observed Kuskokwim Chinook salmon escapement 
indices. The three parameters evaluated were the number sub-stock sampling units available for 
escapement counts (J), the Dirichlet concentration parameter ( Dα ) controlling the variation in carrying 
capacity among sub-stocks, and the correlation in the recruitment among sub-stocks through time (ρ). 
We simulated data from a range of ρ from 0.65 to 0.80. The lower bound of this range represents the 
average among-stock correlation observed in the data for weirs and, thus, the simulated correlation 
input must be at least this value. The upper bound of ρ represents a value slightly higher than is 
reported in the literature for Pacific salmon (~0.7, Mueter et al. 2002). There was no available guidance 
on Dα or J, so we simply simulated data from an arbitrary range of values. The input range for Dα was 
0.25 – 0.75 and for J was 70 – 130. 

We attempted to mimic three observable metrics for weir-based and areal-based Chinook 
salmon escapement data with our simulated data. These metrics included the mean annual coefficient 
of variation among tributary escapement indices (CV), the mean correlation among tributary 
escapement indices through time (Cor), and the mean percent of the total escapement sampled with a 
single weir or aerial survey (i.e, coverage, Cov). These characteristics of the escapement data are key 
drivers influencing the relative value of an escapement index for informing total escapement. These 
metrics were calculated for all simulated data sets and for the observed data. We then sought the 
parameter input values that minimized the proportional deviation (PD) of the metrics of the simulated 
data from the metrics of the observed data as 
 

( ) giobsgiobsgisimgi xxxPD ,,,,,,, −=  
 
where PDi is the proportional deviation of metric i (i.e. CV, Cor, Cov) and gear g (i.e. weirs projects or 
aerial surveys), xsim,i,g represents the value of metric i calculated from the simulated data and xobs,i,g is the 
value of metric i calculated from the observed data. Note that when xsim,i,g = xobs,i,g, the PDi,g approaches 
zero, indicating a perfect match of the simulated data to the observed data. 
 The optimal parameter input values are those that both minimize the ∑ giPD ,  and the 

( )giPDCV , . Thus, we ranked each parameter set by an objective function defined as the sum of these 

two calculations normalized across parameter sets, i.e. ( )*,
*
, gigi PDCVPDObj += ∑ . The * indicates 

that the term is normalized, i.e. centered on zero and scaled to one standard deviation. This ranking 
assumes that minimizing the sum of the normalized proportional deviations of the metrics is equally 
important as minimizing the normalized variation of the proportional deviations among the three 
metrics.  
 
Model calibration results 
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 We identified the top four parameter sets using our model calibration procedure. All parameter 
values differed among these input sets except for Dα , which was a value of 0.25 for all four sets (Table 
A1). Parameter input Set-1 distinctly stood out as the best parameter value set with the lowest Obj, 

∑ iPD , and ( )iPDCV  values (Table C1). The average data metrics (i.e. CV, Cor, Cov) produced by 
parameter Set-1 closely predicted the metrics calculated from the observed data (Figure C1). Observed 
metric values were always with in the 50 percentile of the simulated variation (Figure C1); however, 
differences among parameter sets were subtle. The model calibration procedure produced clear 
evidence that Set-1 replicated the observed data the best, and thus, we chose this set of inputs for this 
study.  
 
 
 
Table C1. The four top parameter sets and the resultant average mean squared error (MSE) and 
coefficient of variation (CV) across parameters. 
Parameter set J Dα  ρ  ∑ giPD ,  ( )giPDCV ,  Obj 

Set - 1 70 0.283 0.75 0.55 0.34 -3.84 
Set - 2 90 0.283 0.75 0.66 0.35 -3.36 
Set - 3 70 0.400 0.70 0.53 0.49 -3.02 
Set - 4 100 0.283 0.75 0.79 0.36 -2.85 
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Figure C1. Box and whisker plots of the simulated values of three metrics describing simulated data sets 
(% coverage , Cov; coefficient of variation, CV; and correlation, Cor) for wier and aerial survey indices. 
Set-1, 2, 3, and 4 represent the top four parameter input sets evaluated. The green and red lines depict 
the observed values for weirs and aerial srveys, respectively, from 1976-2013 for Kuskokwim Chinook 
salmon . 
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CHAPTER 2 

 
EVALUATION OF AN INTEGRATED RUN RECONSTRUCTION AND SPAWNER-RECRUIT MODEL FOR 

KUSKOKWIM RIVER CHINOOK SALMON 
 

ABSTRACT 
 

 Stock assessment scientists are often faced with decisions regarding how to incorporate 
information into models. One primary decision revolves around how estimates that are summaries of 
raw data should be treated (e.g., abundance estimates derived from relative indices of abundance). The 
choice is to fit the terminal model after a sequence of models that produce estimates used as data or to 
integrate the raw data into the terminal analysis. Each approach has advantages and disadvantages that 
constitute a suite of trade-offs which are described in further detail. These trade-offs are investigated 
here by comparing a sequential analysis to an integrated analysis for Pacific salmon stock assessment, 
using the Kuskokwim River Chinook salmon stock, located in western Alaska, as a case study. The 
terminal analysis in both cases is an age-structured Bayesian state-space spawner-recruit model used to 
derive estimates of productivity and capacity for use in setting escapement targets. Primary findings 
showed that the two approaches returned similar estimates of population dynamics parameters and 
management reference points, both in terms of point estimates and uncertainty, showing that the 
treatment of measurement uncertainty in the sequential analysis was an adequate treatment of the 
information content of the data. The primary advantage of the integrated analysis was the added 
realism of sharing calendar year abundance data between brood years, but came at the cost of slow run 
times. This exercise showed that while there is a trade-off between sequential and integrated analyses 
in terms of model complexity and realism, it may not be large enough to warrant an integrated analysis 
in all cases.  We also investigated the sensitivity of estimates of total abundance from the integrated 
model to changes in the assumed variances of harvest observations, and the assumed precision and bias 
of the telemetric mark-recapture estimates of drainage-wide escapement.  We found that drainage-
wide estimates of escapement were insensitive to changes in the assumed sampling variance of harvest 
data and telemetric mark-recapture escapement estimates.  However, the escapement estimates were 
very sensitive to bias in the telemetric mark-recapture data as the estimates rescaled proportionally to 
accomade the change in the mark-recapture data.  These findings highlight the common-sense notion 
that obtaining accurate estimates of drainage-wide escapement from telemetric mark-recapature 
studies is very important in the pursuit of unbiased estimates from this run reconstruction model. 
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INTRODUCTION 
Stock assessment scientists are often faced with decisions regarding how to incorporate 

information into models. This is particularly true when there are various types of information, some of 
which are raw data and some are estimates from previous models (e.g., catch-at-age data versus 
estimates of abundance; Maunder and Punt 2013). Additionally, these cases arise when two processes 
give rise to the observed dataset, but only one is of interest, such as when data are produced by a 
biological population process and a measurement process, but inference is desired only for the 
population process. In these cases, the practitioner has the option to either separate the information 
into a sequence of analyses or integrate the raw information into one analysis. This choice may at first 
seem arbitrary and inconsequential, but may prove to have substantial ramifications on the results and 
interpretation of the assessment model (Brooks and Deroba 2015). 

Under the sequential analysis approach (often termed “two-step”), raw data are used in one 
model to produce estimates of interest that are then passed to another model as either data or 
informative prior distributions (Michielsens et al. 2008). A common example of this practice in stock 
assessment modeling is the estimation of spawning stock biomass and a recruitment time series from a 
Virtual Population Analysis-type model that are then passed to a spawner-recruit model to estimate 
parameters that govern the population dynamics (Maunder and Punt 2013). This sequential approach 
allows for the inclusion of information in a summarized form into a more simplified terminal model that 
requires it in that form. However, as noted by Maunder (2001), the sequential approach has some 
potential disadvantages including loss of information in the raw data that could be exploited by the 
terminal analysis if not already summarized, inadequate treatment of uncertainty in the observation 
level-data, and reduced diagnostic ability.  

By contrast, an integrated analysis attempts to incorporate the raw data (as fully as appropriate) 
into a single model (Fournier and Archibald 1982). An integrated analysis is often conducted with the 
goal of preserving the complete information content of the data and partitioning uncertainty in the 
analysis due to observation error and process variation. These types of integrated population models 
are gaining popularity in ecological assessments in both applied and academic settings (Schaub and 
Abadi 2011; Royale and Dorazio 2008), however, due to the inherent complexity of integrated analyses, 
they present unique problems, such as how to formulate the joint likelihood, convergence issues, and 
computational complexities (Maunder and Punt 2013). However, with recent advances in computing 
power and statistical approaches to fitting complex models, particularly Bayesian estimation using 
Markov chain Monte Carlo (MCMC) methods, these barriers are becoming less troublesome for the 
applied stock assessment practitioner.  

Even with integrated analyses, however, the investigator is tasked with deciding which data to 
include in its raw form versus which information should be summarized before inclusion in the model. 
As such, it is more appropriate to view the contrast between sequential and integrated analyses as a 
continuum rather than a dichotomy. On the extreme sequential side of the continuum, all raw data are 
summarized or combined into estimates prior to being included in the final model. On the extreme 
integrated side of the continuum, every raw data point is included as an observation of the system and 
is used for inference. There exists intermediate scenarios between these extremes where some data are 
summarized pre-analysis and some data are included in raw form. As one moves the analysis in either 
direction along this continuum, the relative advantages and disadvantages of either approach should 
become apparent in the output of the whole analysis. 

Assessment approaches for Pacific salmon typically involve collecting observations of annual 
spawner abundance and harvest then combining this information into a brood table to obtain brood 
year recruits based on the year and age at which the fish returned (e.g., Clark et al. 2009; Bue et al. 
2012). Note that only the calendar year processes (escapement and harvest) can be observed, which are 
then used to obtain brood year recruitment that cannot be directly observed. Oftentimes, spawner 
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abundance and harvest are not complete counts and must be estimated (e.g., run reconstruction; 
Shotwell and Adkison 2004). These estimates are then passed to a spawner-recruit analysis to estimate 
productivity, carrying capacity, and variation in recruitment for the derivation of biological reference 
points used in setting escapement goals (Clark et al. 2009). This approach constitutes a sequential 
analysis. However, in some cases it is possible to integrate the run reconstruction model directly into the 
spawner-recruit analysis whereby brood year spawner and recruit abundances are reconstructed from 
observational-level data and a spawner-recruit relationship is simultaneously fit to these estimates. This 
approach may have the benefits of more fully addressing uncertainty due to the interaction between 
the raw data (i.e., observation model) with the spawner-recruit analysis (i.e., process model) and the 
sharing of information between calendar years due to the intrinsic link between calendar years via the 
spawner-recruit analysis (Maunder 2001). 

In this chapter, I present the application of an analysis that moves a stock assessment further 
along the continuum from a sequential two-step analysis to a more fully integrated analysis. Potential 
trade-offs of integrating the analysis will be investigated by independently running both a sequential 
and an integrated analysis and comparing relevant quantities of interest. The terminal model in both 
cases is fit using a Bayesian state-space framework to allow for simultaneous incorporation of both 
measurement error in the input information and process variation in the spawner-recruit relationship 
(Fleischman et al. 2013). This analysis is conducted using the Kuskokwim River Chinook salmon stock, 
located in western Alaska, as a case study. The objectives of this exercise are to (1) confirm that the 
integrated analysis is computationally feasible in this case given the information content of the data and 
the model complexity, (2) compare the findings from the integrated model to a sequential assessment 
to determine if the proposed advantages of integrated analyses are evident in this case and (3) assess 
the sensitivity of the integrated analysis to parametric uncertainty in terms of assumed variance 
components and biases in scaling information. The primary a priori expectation is that there should be 
greater posterior uncertainty in quantities from the integrated analysis than the sequential analysis 
because the measurement error in the raw data is allowed to interact more directly with the spawner-
recruit model in the integrated analysis. 

 
METHODS 

Study System 
The Kuskokwim River is the second largest drainage system in the state of Alaska (~130,000 

km2), with the main stem traveling approximately 1,500 km from its headwaters in the Kuskokwim 
Mountains to the southwestern coast where it empties into the Kuskokwim Bay of the Bering Sea 
(Hamazaki et al. 2012). Historically, the Kuskokwim River has provided the largest subsistence fishery for 
Chinook salmon in the state (39 year average ~70,000 fish/year), but has seen low runs in recent years 
leading to substantial conservation measures including fishery closures for Chinook salmon and other 
species. While the directed commercial fishery for Chinook salmon was closed in 1987, incidental 
harvest (28 year average ~14,000 fish/year since closure) of Chinook salmon still occurs in the chum 
salmon O. keta and sockeye salmon O. nerka commercial fisheries (Linderman and Bergstrom 2009). 

Assessment data for the Kuskokwim River Chinook salmon stock date back to 1976 and consist 
of escapement counts made at weirs (n = 6), aerial surveys flown at peak spawning (n = 14), total annual 
harvest estimates from the commercial and subsistence fisheries, historical catch-per-unit-effort data 
from the commercial fishery, age composition data from various areas in the drainage, and large-scale 
mark-recapture estimates (Table 1; Bue et al. 2012).  

 
Integrated Model Structure 

The integrated model combines the estimation of abundance and population dynamics 
parameters into one Bayesian state-space model (as opposed to separate models, described in 
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Sequential Analysis Structure below). This framework moves the assessment further on the continuum 
towards an integrated analysis. This model is hereafter referred to as the “integrated model”. The 
integrated model structure has been applied to other salmon assessments across the state of Alaska 
including the Kenai early and late Chinook runs (McKinley and Fleischman 2013; Fleischman and 
McKinley 2013) and shows promise in terms of dealing with measurement error and other statistical 
problems inherent to traditional spawner-recruit analyses (Chapter 1, this Thesis; Fleischman et al. 
2013). The general model formulation follows that of Fleischman et al. (2013) who presented an 
integrated analysis for the Karluk River Chinook salmon population on Kodiak Island, Alaska, which is 
monitored annually using one weir and harvest sampling. The spawner-recruit analysis served as the 
unobserved state process submodel which was informed by escapement (weir) and harvest 
observations in the observation process submodel. The integrated model presented in this chapter 
extends this formulation to include all of the assessment data from the Kuskokwim River Chinook 
salmon stock collected over the past 39 years (Table 1)  

The drainage-wide integrated model was built specifically for the Kuskokwim River drainage 
Chinook salmon stock. Within the state-space model there are two submodels which are fully described 
below. The process submodel defines the true unobserved state of the system: the population dynamics 
of the salmon stock including Ricker spawner-recruit productivity and brood year-specific maturation 
schedules. Based on these components, the process model produces an expected calendar year run 
abundance. The observation submodel then links these true states to the observed states by 
incorporating all of the observations that have been made of the system for the past 39 years (1976-
2014). The integrated model is cast in the Bayesian mode of inference and uses MCMC methods to 
estimate the joint posterior probability distribution for all non-fixed quantities in the model. The process 
and observation submodels emulated the approaches followed by Fleischman et al. (2013) and Bue et 
al. (2012), respectively.  

 
Process Submodel 

Hereafter, the term “run” refers to the total number of fish coming to the river mouth in a single 
calendar year which is made of several brood years (cohorts) and the “return” is all of the fish that 
return in multiple years but were all spawned in the same brood year (Ry) and can thus be used 
interchangeably with the term “recruitment” or “recruits”. Returns of Chinook salmon to the Kuskokwim 
River were treated as unobserved states modeled using the linearized Ricker (1954) spawner-recruit 
model, but adapted for lag-1 auto-regressive [AR(1)] lognormal process error:  
 ln�Ry� = ln�Sy�+ ln(α) -βSy+ϕωy-1+εy (1) 
where Sy is the escapement in year y that produced brood year returns Ry. α is the productivity 
parameter, β is the capacity parameter, and ϕ is the AR(1) coefficient that specifies the strength of serial 
autocorrelation in the recruitment time series. AR(1) process errors were used to account for trends in 
juvenile survival, wherein positive recruitment residuals in brood year y-1 lead to higher-than-expected 
residuals in brood year y, and vice versa (i.e., autocorrelation). Lognormal errors were used to allow 
residual variance to increase as the mean increases, a phenomenon commonly observed in spawner-
recruit residuals and ecological data in general (Hilborn and Walters 1992). ωy is the model residual:  
 ωy=ωy-1+εy (2) 
where ɛy are independent [non-AR(1)] normally-distributed process errors with standard deviation σR. 
The first seven brood year returns, which could not be linked to monitored escapement data through 
the spawner-recruit relationship, were modeled as random effects drawn from a shared lognormal 
distribution with parameters ln(R0) and σR0. 

 The model was age-structured to account for recruits from a given brood year being able to 
return at age four, five, six, or seven. Furthermore, the model allowed for annual variation the 



38 
 
 

proportion of fish mature-at-age (py,a) from a given brood year (maturation dictates the age-at-return). 
Brood year maturation schedules were modeled as Dirichlet random effects drawn from a common 
Dirichlet distribution following Fleischman et al. (2013). The Dirichlet is the conjugate distribution for the 
multinomial distribution, just as the beta distribution is for the binomial (i.e., it models the probability of 
success for each possible outcome; here the probability of maturing and returning at a given age; 
McCarthy 2007). Rather than utilizing the built-in Dirichlet distribution in JAGS, the common (i.e., 
shared) distribution was implemented hierarchically using the distributions that make up the Dirichlet. 
Formulating the Dirichlet in this fashion allowed for the hyperparameters to be estimated and 
monitored including the concentration parameter D, which controls the variation in maturation-at-age 
between brood years (smaller values, more variation) and the expected frequencies of maturation at 
age (γa). The Dirichlet distribution was constructed by using a series of independent Gamma 
distributions. The hyperparameter vector of expected frequencies for maturing at each age (γ) were 
independent gamma random variables. These can be used to return the central tendencies of the 
proportion maturing-at-age from any given brood year from the common (i.e., shared) Dirichlet:  
 πa= γa

∑ γaa
 (3) 

Brood year-specific maturation schedules were then drawn from this common distribution: 
 py,a= 

gy,a

∑ gy,aa
 (4) 

 gy,a ~ Gamma(shape= γa, rate=1.0) (5) 
The number of fish of age a in the run occurring in year y (Ny,a) was:  
 Ny,a= Ry-a py-a,a (6) 
And the total run abundance in calendar year y was: 
 Ny=∑ Ny,a

7
a=4  (7) 

The relevant biological reference points for the calculation of escapement goals were calculated within 
the model which allowed for their marginal posterior distributions to be summarized like any other 
quantity in the model. The three most relevant reference points are (1) Seq, the spawner abundance that 
produces replacement recruitment to keep the population at equilibrium, (2) SMSY, the spawner 
abundance that produces maximum sustained yield (MSY), and (3) SMAX, the spawner abundance that 
produces maximum recruitment. Before calculating the reference points, α was corrected for lognormal 
process error and autocorrelated recruitment residuals (Hilborn 1985) 

 ln(αc) = ln(α) + σR
2

2(1-ϕ2)
 (8) 

Where σR is the lognormal process error around the expected spawner-recruit curve. The relevant 
biological reference points were then calculated: 
 SMAX= 1

β
 (9) 

 Seq= ln(αc) *SMAX  (10) 
 SMSY=Seq*(0.5-0.07* ln(αc) ) (11) 
 
Observation Submodel 

The role of the observation submodel is to synthesize all of the data from the past 39 years from 
Kuskokwim Chinook salmon sampling and to fit it to the true states given by the process submodel. For 
simplicity of presentation, the observation submodel can be partitioned into five main components 
representing the primary data sources: (1) weir and aerial survey counts, (2) commercial catch-per-unit-
effort (CPUE), (3) annual escapement estimates from mark-recapture studies, (4) age-composition data 
in the form of scale counts, and (5) total annual harvest components for the commercial and subsistence 
fisheries. These data were supplied by ADF&G biologists.   
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 (1) Weirs and Aerial Surveys – Weir projects (n = 6) were operated by placing a barrier in the 
stream channel with a narrow passage opened periodically through which fish are counted as they pass 
(Blain et al. 2014). Aerial surveys (n = 14) were flown during the expected peak of the run to survey a 
subset of streams that could not be sampled by weirs due to logistical or monetary constraints (Hansen 
and Blain 2014). Weirs and aerial surveys could not count all escaping fish to a tributary and therefore 
counts made by each project should be interpreted as indices of escapement rather than censuses. 
These counts can be proportionally related to total escapement such that the expected number of fish 
counted in project j in year y is: 

 Ijy=
S�y

k
�

j

 (12) 

where S�y is the total annual escapement in the drainage predicted by the model, Ijy is the predicted 
count from weir or aerial survey project j in year y and kj is a proportionality coefficient that scales the 
index to the total drainage-wide escapement. The ‘hat’ over Sy in equation 2.12 denotes that this value 
is the predicted drainage-wide escapement in a given year, to make the distinction between observed 
(estimated) escapements from mark-recapture studies. Note that kj was constant over time (has no y 
index), which made the assumption that the proportion of total escapement counted at each tributary 
was constant every year. These proportionality coefficients represented a mean inverse proportion of 
the total escapement that each project counted each year.   
 These index counts were assumed to have a negative binomial sampling distribution to account 
for over-dispersion (Hilborn and Mangel 1997). The negative binomial distribution was formulated to 
include an over-dispersion parameter (rj) which represents the amount of extra-Poisson variation 
present in the dataset. The tributary counts were over-dispersed because they included both process 
error (annual variation in the proportion of the total escapement going to each tributary) and 
measurement error associated with annual sampling.   
 (2) Commercial CPUE – The commercial CPUE component used weekly (w) catch (Cyw) and effort 
(Byw) data from the commercial fishery that occurs in district W1 (Lower River) to serve as a relative 
index of abundance. Effort data were expressed in units of permit hours per week w.  Expected catch 
was calculated using the Baranov catch equation where weekly catch was a function of the fishing 
mortality and the number of fish available for harvest. The number of fish reaching district W1 by week 
was calculated using run timing estimates from a gill net test fishery operated daily in-season in Bethel, 
AK. The proportion of the annual run Pyw present in week w of year y was calculated using the test 
fishery CPUE: 
 Pyw= CPUEyw

∑ CPUEyw
 (13) 

and the number of fish in district W1 in week w of year y (Wyw) was: 
 Wyw=NyPyw (14) 
where Ny is the expected run size in year y given by the process submodel. The expected catch in week 
w of year y was:  
 Cyw=Wyw(1-e-qByw) (15) 
where q is the estimated catchability of the gear used. Due to historical changes in gill net restrictions 
and technologies, separate catchabilities must be estimated for different time periods in equation 2.15. 
During the first few weeks in the early years of data collection there were no mesh size restrictions were 
in place so qunr was used. From 1976-1984 a 6-inch stretched mesh size restriction was put into place 
(qres). In the early 1980s a new gill net material was introduced that increased the efficiency of gill nets 
(Bue 1986), and it was assumed that this gear was used from 1985 to the present (qmono).  Cyw was fit to 
the observed catch in year y and week w using a lognormal likelihood density function.  
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 (3) Mark-Recapture Scaling – In order to calibrate the relative abundance indices to drainage-
wide abundances, a large-scale mark-recapture study was conducted from 2002 to 2007 using the 
Chapman modification to the Lincoln-Petersen estimator (Schaberg et al. 2012). The 2002 estimate 
violated the assumption of equal probability of recapture, and thus was excluded from this analysis 
(Schaberg et al. 2012). Tagging occurred in Kalskag, AK and recaptures were made by observing tagged 
fish as they passed weirs, so the mark-recapture estimates only accounted for in-river abundance 
upstream of the tagging site (Su). Downstream abundance (Sd) was estimated using the Parken et al. 
(2006) habitat-based model (Schaberg et al. 2012). Total observed (estimated) escapement was 
calculated:  
 Sy=Su+ Sd - Hu (16) 
where Hu is the harvest that occurred upstream of the tagging site. Uncertainty in Su, Sd, and Hu were 
estimated using bootstrapping, predictive error from the Parken et al. (2006) regression model, and 
survey/estimation variation, respectively. Because the variance of a sum is the sum of the component 
variances: 
 var(Sy) = var(Su) + var(Sd) - var(Hu) (17) 
The expected escapement S�y  was fit to the observed escapement Sy given in equation 2.16 using a 
lognormal likelihood. 
 (4) Age-Composition – Age-composition proportions for this model were the same as those used 
by Hamazaki et al. (2012), with additional years (2012-2014) obtained directly from ADF&G biologists. 
Those proportions were calculated by taking a weighted average of all age sampling projects including 
commercial and subsistence fisheries, Bethel test fishery, and weir projects (Bue et al. 2012). The result 
of this weighted average are vectors of calendar year proportions-at-age qobs;y that sum to one. These 
proportions were then used to inform the expected age proportions using a multinomial likelihood by 
multiplying the qobs;y vector by the effective sample size (ny) for year y:  
  Xy=qobs;yny (18) 
 Xy~multi(qy, ny) (19) 
where 
 qy,a= Ny,a

Ny
 (20) 

from the process submodel. In the multinomial distribution, the ny specifies how closely the modeled 
expectation must fit to the observed data Xy, similar to the variance component in a normal likelihood 
(larger n results in stronger information content about age proportions and a closer model fit; Maunder 
2011). The values of ny were chosen by ADF&G such that age-composition data collected early in the 
data time series were more flexible in the model than more recently collected age composition data 
when the scale sampling efforts were more intensive and presumably more representative. For the time 
periods 1976-1999 and 2000-2014, ny was set at 25 and 100, respectively following Hamazaki et al. 
(2012).   
 (5) Harvest Observations (Total Annual) – The original Bue et al. (2012) run reconstruction model 
assumed harvest was known perfectly. However, in the state-space framework, it is possible to model 
the harvest and observation processes that gives rise to the observed harvest estimates in order to 
include measurement error (i.e., uncertainty in harvest estimates). This component was divided into 
commercial and subsistence harvests, with each having different assumed observation variances. Since 
commercial harvest reporting is mandatory, there was assumed to be less observation error than for 
subsistence harvest. These harvests were modeled using a total finite harvest rate Uy which was further 
divided: 
 Ucom,y = Uy pcom,y (21) 
 Usub,y = Uy (1 - pcom,y) (22) 



41 
 
 

 Hcom,y = Ucom,yNy (23) 
 Hsub,y = Usub,yNy (24) 
 S�y= Ny(1-Uy) (25) 
where pcom,y is the annual proportion of the total harvest rate that was made up of commercial harvest. 
These harvest components were fit using a lognormal likelihood. It was the S�y derived in equation 2.25 
that was used throughout the rest of the observation submodel (e.g., equation 12). 
 
Sequential Analysis Structure 

In contrast to the integrated analysis, the sequential analysis functioned by estimating 
abundance and the population dynamics (i.e., spawner-recruit) parameters in two separate and 
sequential models. The first model was a drainage-wide run reconstruction model (hereafter “run 
reconstruction”) which was developed by Bue et al. (2012) following methods first proposed by Shotwell 
and Adkison (2004). The run reconstruction served to synthesize the escapement and harvest 
observations into calendar year run abundance estimates and uncertainty, expressed as a coefficient of 
variation on each run estimate (CV). Equations 12-17, 25 from the integrated model described above 
were based on the original run reconstruction formulae presented in Bue et al. (2012) and the two 
components are equivalent in nearly every regard. Primary differences between the observation 
submodel of the integrated analysis and the run reconstruction from the sequential analysis is that the 
latter is fit using maximum likelihood methods, it scales by fitting to a drainage-wide total abundance 
estimate based on mark-recapture rather than escapement, and assumes harvest is known without 
error.   

In order to estimate the population dynamics parameters, the terminal model in the sequential 
analysis was a post-hoc Bayesian state-space spawner-recruit model (hereafter “post-hoc model”). This 
model was originally developed by Hamazaki et al. (2012) and was based on the aforementioned 
Fleischman et al. (2013) age-structured Bayesian state-space spawner-recruit model. The post-hoc 
model treated the run abundance estimates from the run reconstruction model as independently 
observed data with fixed uncertainty captured in the CVs on each run estimate. The post-hoc model was 
made up of equations 2.01-2.11 and 2.18-2.25 from the integrated analysis. Note that measurement 
error and process variation in fish abundance were estimated in separate models under the sequential 
assessment. 

 
Comparisons between the Integrated and Sequential Kuskokwim Assessments 
 In order to investigate the trade-offs of integrating the analysis, the most relevant model output 
from the sequential assessment (run reconstruction then post-hoc spawner-recruit analysis) was 
compared to the corresponding output of the integrated analysis. Important quantities for comparison 
to the integrated model included: (1) total run abundance from the run reconstruction and the expected 
run abundance from the post-hoc model, (2) key spawner-recruit parameters from the post-hoc model, 
(3) scaling and over-dispersion parameters in the run reconstruction components, and (4) biological 
reference points. In addition to point estimates (posterior means), uncertainty was expressed in terms 
of 95% Wald confidence intervals derived from the Hessian matrix (inverse variance-covariance matrix) 
for the run reconstruction and Bayesian 95% credible intervals for the integrated and post-hoc models. 
It is important to note that the equations for all model predictions and likelihoods were the same 
between the integrated model and the sequential analysis. The key difference between the two 
approaches was the component in the sequential analysis that linked the post-hoc model to the run 
reconstructed estimates via a likelihood. In the integrated model, the run abundance estimates were 
simply a required derived quantity, not information that the model was fit to. 
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To investigate potential biases, the spawner-recruit parameters of interest were further 
compared to a traditional ordinary least-squares linear regression technique that is more commonly 
applied to spawner-recruit analyses. To conduct this traditional analysis, the run abundance estimates 
(ignoring their uncertainty) were split into calendar year abundance-at-age according to age-
composition information from scale counts and the appropriate years and ages were summed to arrive 
at brood year returns. To obtain brood year escapement, calendar year harvest estimates were 
subtracted from total calendar year abundance estimates. These brood year escapement and returns 
were then used in a linear regression: 

 ln �Ry

Sy
� =ln(α)-βSy+εy~N(0, σ) (26) 

to obtain estimates of α, β, and σ. Note that this method ignores measurement uncertainty in the 
quantities Ry and Sy and assumes that the recruitment residuals are independent and identically 
distributed through time, which ignores any time series patterns. These assumptions make the 
traditional spawner-recruit analysis susceptible to both time series and error-in-variables biases 
(Walters 1985; Walters and Ludwig 1981). Uncertainty in the parameter estimates and derived 
reference points was estimated using parametric bootstrapping: randomization of the regression 
residuals, summation with the predicted values from the original fit, and re-estimation of the model 
parameters (Hamazaki et al. 2012). α, β, and σ were saved and biological reference points were 
calculated for each bootstrapped sample using equations 2.05-2.08.   
 
Sensitivity Analysis  
 There are cases where a single dataset includes both measurement and process error and the 
model is required to separate these sources of variation under the state-space framework. Oftentimes, 
the model cannot parse out what variation is due to the underlying biological or fishery process and 
what variation is due to measurement. In these cases, one of the sources of variation must be assumed 
known. One example is the harvest model presented in equations 2.21-2.25. The variation in the 
observed harvest arises from two processes: (1) annual variation in the true Uy where fishers harvest fish 
from the annual run and (2) in the measured (estimated) perception of the total harvest. When provided 
with an annual data point to inform this component, it is impossible for the model to partition which 
variation should lead to uncertainty in the harvest process and which should be assigned to 
measurement error. It is therefore necessary to provide an assumed variance, and for this case an 
assumed known observation error was provided and the model was allowed to handle process variation. 
This was conducted by assuming an observation CV. The CVs on harvest were combinations of output 
from harvest estimation models used by ADF&G and assumptions based on expert judgement 
(Hamazaki et al. 2012). The components of the model that included these fixed observation CVs were (1) 
commercial harvest, (2) subsistence harvest, and (3) the mark-recapture estimates of escapement. 
Model sensitivity to these assumptions was investigated by altering the assumed CV within reasonable 
ranges and comparing the resulting changes to the original model. All assumed variances were altered 
by 50% and 200% to assess the impact of being more or less certain about the corresponding estimates, 
respectively. Each sensitivity scenario was conducted in isolation of other scenarios so that any changes 
in model output could attributed to a single source. 
 Considering that the model was reliant on the mark-recapture estimates of escapement for 
scaling information, I thought it prudent to investigate the model sensitivity to biases in these estimates. 
The mark-recapture estimates were altered by ± 5%, 10%, and 20% and the model was fitted to the 
altered estimates. The relative uncertainty in these estimates was not altered (i.e., the assumed CV 
remained the same as the base model). Because these estimates constitute the principle scaling 
information, one would expect to see a proportional increase/decrease in the model expected 
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escapement in not only the years with mark-recapture estimates, but in the whole escapement time 
series as well. 
 
Computation 

The integrated model was fit using Bayesian integration with MCMC methods to sample from 
the joint posterior probability distribution. MCMC sampling was conducted using parallel computing 
with the JAGS software (“Just Another Gibbs Sampler”, Plummer 2013) implemented through R (R Core 
Development Team 2014) using the R package “R2jags” (Su and Yajima 2015). Prior distributions on all 
unknown parameters were uninformative and their structures were based on recommendations from 
Fleischman et al. (2013) and Bolker (2008) with necessary truncations to prevent the sampler from 
drawing implausible parameter values (e.g., log(α) had a diffuse normal prior truncated at zero). MCMC 
sampling was conducted using two chains with different initial values to verify convergence and to 
detect potential multiple solutions. Convergence of the chains was assessed with visual inspection of the 
posterior distribution sampled by each chain, trace plots, and the Gelman-Rubin statistic (Gelman et al. 
2004). MCMC sampling of all Bayesian models (i.e., integrated model scenarios and post-hoc model) 
involved a burn-in period of 500,000 iterations, 1,000,000 post-burn-in iterations, and a thinning interval 
of 200 iterations, using two chains to ensure convergence. This resulted in a total of 10,000 posterior 
samples retained for analysis. The model converged under these specifications, as evidenced by 
Gelman-Rubin statistics of <1.05 for every estimated parameter. Point estimates (posterior mean) and 
Bayesian 95% credible intervals (2.5 and 97.5 percentiles of posterior distribution) for quantities of 
interest were calculated from their respective marginal posterior distributions. 

 
RESULTS 

Comparisons to the Sequential Kuskokwim Assessment 
Run Abundance and Uncertainty 
 The integrated model performed similarly with regards to trends in total run abundance point 
estimates from both the run reconstruction and post-hoc model (Figure 1, upper panel). The integrated 
model exhibited a mean 2% decrease in run abundance from the run reconstruction, and a mean 3% 
decrease from post-hoc model. Both the integrated model and the post-hoc model exhibited some 
shrinkage in run abundance, which is a statistical characteristic of hierarchical models where quantities 
at intermediate levels are pulled to the values suggested by higher-level distributions (i.e., 
hyperdistributions) since all sources of information are simultaneously considered by the model. In this 
case, the spawner-recruit component treated the extreme high and low run abundances as unlikely to 
have occurred and tended to pull them toward the mean spawner-recruit curve. This was possible 
because the run estimates used by the models were not fixed, but had uncertainty and flexibility and 
could thus be adjusted to satisfy the spawner-recruit likelihood. Both the post-hoc model and the 
integrated model shrank by approximately the same amount and in the same years.  

All three models exhibited a slightly decreasing temporal trend in run abundance CV (Figure 1, 
lower panel), due to the addition of more escapement monitoring projects through time (Table 1). The 
run reconstruction CVs were the most variable between years, while the integrated and post-hoc 
models resulted in CVs that fluctuated less from year to year (Figure 1). This finding resulted from total 
abundance being estimated nearly independently each year in the run reconstruction (tributary 
proportionality scalars were shared by all years, which links them) whereas years were linked explicitly 
in the integrated and post-hoc models via the spawner-recruit relationship. For example, if escapement 
in one year was uncertain due to very few monitoring projects, it could be informed by later years based 
on how many recruits it produced. The CVs were relatively similar between the post-hoc model and the 
integrated model, although the integrated model did consistently show slightly more uncertainty in run 
abundance (mean 1.2 CV percentage points greater than post-hoc model).  
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Spawner-Recruit Parameters and Biological Reference Points  
 Overall, the spawner-recruit point estimates between the integrated and post-hoc models were 
similar (Table 2). The integrated model indicated that the maximum productivity of the stock (α) was 
between 2.45 and 12.36 with 0.95 probability whereas the post-hoc model indicated it was between 
2.39 and 11.74. Although the credible bounds on α were slightly wider for the integrated model, the 
post-hoc model estimated slightly wider credible intervals for most other spawner-recruit parameters of 
interest (Table 2). It is clear that overall, both the integrated and post-hoc models treated the spawner-
recruit components of the assessment similarly (Figure 2). When the traditional linear regression 
technique was implemented on the run reconstruction estimates, the estimate of α was much higher 
(7.29; 95% CI 5.62-9.34) than both the integrated and post-hoc models. The linear regression technique 
showed approximately the same amount of residual variation in the spawner-recruit relationship (σR = 
0.29; 0.20-0.36) as the integrated (σR = 0.23; 0.15-0.34) and post-hoc (σR = 0.24; 0.16-0.35) models. In all 
model runs, the γ parameters (those governing the expected frequencies of fish maturing at age from all 
brood years) were the slowest mixing (i.e., showed the most MCMC autocorrelation), along with all 
parameters that were derived from them. The mean probability of maturing-at-age across brood years 
(πa) were essentially the same between the integrated and post-hoc models (Table 2).   
The amount of serial autocorrelation in the recruitment time series (ϕ), had very similar posterior 
distributions between both models (Table 2). Based on the posterior mean of ϕ under both models, 
there was a large amount of serial autocorrelation in the recruitment residuals, indicating the potential 
for time series bias if not accounted for.  
 With regards to biological reference points, the two Bayesian models resulted in relatively 
similar point estimates, yet the integrated model estimated wider credible bounds for all three 
quantities (Table 2). The traditional regression approach did not return reference points that were 
systematically higher or lower than the two Bayesian models, however the confidence bounds were 
much narrower.  
 
Index Scalars and Over-dispersion Parameters 
 The proportionality coefficients that controlled the scaling of weir and aerial survey counts to 
the drainage-wide mark-recapture estimates were very similar between the run reconstruction and the 
integrated model (integrated scalars mean 3.7% larger than run reconstruction; Figure 3). This finding 
showed that the two models used the escapement index information similarly: on average, each 
tributary count made up the same proportion of the total escapement in both the run reconstruction 
and the integrated model. It is clear that both models dealt with over-dispersion similarly as well, with 
the integrated model estimating slightly more over-dispersion in nearly all projects (Figure 4). 
 
Sensitivity Analysis 
Assumed Observation CV on Harvest Estimates 
 When the assumed variances on commercial and subsistence annual harvests were halved or 
doubled, the model responded by fitting more closely or loosely, respectively (Figure 5). Doubling the CV 
down-weights those data and loosens the extent to which the model must fit to them (Francis 2011). 
Both commercial and subsistence harvest exhibited this behavior, although when the subsistence 
harvest CV was doubled, it lead to much more variation in the expected harvest than did commercial 
harvest. This discrepancy was due to the greater assumed baseline CV on subsistence harvest estimates 
(CV varied annually between 1%-10%) than commercial harvest (2% CV in all years).  However, alterning 
the precision of these data had little effect on the point estimates of drainage-wide escapement. 
 
Assumed Observation CV on Mark-Recapture Estimates of Escapement 



45 
 
 

Altering the precision of the 2003-2007 drainage-wide escapement estimates had a very small 
effect on the model point estimates of escapement in those years (Figure 6). However, when the 
assumed CV was halved, the escapement uncertainty in the corresponding years was reduced by 33% on 
average when compared to the base model. Similarly, when the assumed CV was doubled, the 
escapement uncertainty in those years increased by 49% on average. Not only did these changes in 
assumed variances affect uncertainty in the years with mark-recapture estimates, but the uncertainty 
the whole escapement time series was reduced or increased depending on the scenario.  

 
Sensitivity to Changing the Drainage-Wide Mark-Recapture Estimate 
 When the sensitivity of the model to biases in the scaling information (i.e., drainage-wide mark-
recapture estimates) was investigated, the model responded by scaling with the altered estimates 
(Figure 7). Changing the mark-recapture estimate by ±5%, 10%, and 20% resulted in average changes of 
±4%, 9%, and 18%, respectively. These percent changes were consistent for years with mark-recapture 
estimates and the whole time series (Figure 8).  
 

DISCUSSION 
 With the analyses presented in this chapter, it is clear that the integrated model is a feasible 
model formulation for the Kuskokwim River Chinook salmon fishery assessment. The model converged 
well, did not show any major MCMC or residual problems, and provided very similar estimates to the 
current two-step assessment approach. Similar point estimates were expected, as both assessment 
approaches used the same data and the same equation structures (e.g. same tributary count model, 
same spawner-recruit function, etc.). The key difference in the two analyses is that under the sequential 
analysis, the run reconstruction is fit with maximum likelihood estimation that provides run estimates 
and uncertainty to the post-hoc model, whereas this happens simultaneously under the integrated 
model in a single Bayesian framework. The overall consistency in estimates between the two 
approaches suggests that integrating the analysis did not change the inference regarding stock 
abundance, productivity, carrying capacity, or management recommendations.  
 Somewhat contrary to the a priori expectations, however, was the similarity in the posterior 
uncertainty in quantities of interest between the integrated and post-hoc models. It was expected that 
the integrated model would lead to substantially greater posterior uncertainty in quantities like run 
abundance, spawner-recruit parameters, and biological reference points due to the direct interaction 
between the observation-level data (e.g., weir and aerial survey counts) and the process (i.e., spawner-
recruit) submodel. As these analyses have shown, the extent of the increase in uncertainty was not as 
large as expected. Posterior uncertainty in run abundance under the integrated model was slightly 
higher than the post-hoc model, but less than expected. This difference is likely due to the assumption 
of statistical independence of the run abundance estimates under the post-hoc model. After 
investigating the correlations in estimated run abundances from the run reconstruction, it was found 
that the run estimates were indeed correlated in the run reconstruction model (0.30 mean correlation, 
0.57 maximum correlation). The post-hoc model did not carry these correlations forward by treating 
them as independent observations, which ignored that there was information about other estimates 
contained in any one estimate and thus resulted in underestimation of the posterior uncertainty in run 
abundance. One advantage of the integrated model is that it was able to internally address these 
correlations by estimating the abundances within the same model, as stated by Maunder and Punt 
(2013). The integrated model estimated slightly more uncertainty in α and D, but all other spawner-
recruit parameters had slightly more uncertainty under the post-hoc model. The integrated model did 
result in more uncertainty in the biological reference points, but likely not enough to alter the 
management recommendations. This modeling exercise gave credence to the two-step assessment in 
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terms of its ability to deal with measurement uncertainty by capturing it with the CV on the run 
estimates from the run reconstruction model.   
 The integrated model proved to be robust to parametric uncertainty, particularly with regards to 
the assumed fixed CV on the mark-recapture scaling information. The expectation was that when the 
CVs were increased on the mark-recapture estimates, posterior uncertainty in escapement in that year 
would increase and vise-versa. Additionally, since the mark-recapture estimates of escapement were the 
only scaling information provided to the model, changing their uncertainty should not substantially alter 
the point estimates of escapement in those years. The results of this exercise confirmed these 
expectations. Even when the CVs on the estimates were doubled, the model did not show any 
systematic scaling biases or shrinking of the escapement estimates in those years, which showed that 
the model can perform well even with weakly informative scaling data. The only consequence was that 
the posterior uncertainty of abundance quantities was increased, which is what would be expected 
when weaker scaling information is provided to the model. This finding was critical because it proved 
that the model is robust to measurement error in the scaling information. 

As previously mentioned, the only scaling information provided to the model were the drainage-
wide estimates of escapement from mark-recapture (and lower river habitat expansion). Thus, altering 
these point estimates should result in a proportional change in the expected escapement. The results of 
this exercise confirmed this expectation, not only for escapement in the years with mark-recapture 
estimates but for the entire escapement time series. This issue is related more to the accuracy of the 
mark-recapture estimate than the performance of the model. The mark-recapture estimates represent 
the best-available scientific understanding of drainage-wide escapement, and so sensitivity to these 
estimates is necessary. This is one case where it is desirable for a model to be sensitive to the accuracy 
of the input information.  
 This being said, there are several areas in which the integrated model performed sub-optimally. 
One case is the slow mixing of the maturation schedule component. This is one of the most complex 
portions of the model and it comes as no surprise that it mixes slowly. In the early years of the data time 
series, the scale count frequencies were weakly informative and there were some years with missing 
scale counts. In these cases, the model could satisfy the data in many different ways so the parameters 
in this component mixed slowly and MCMC samples were highly correlated. The inclusion of the 
Dirichlet random effects aided this problem, as the model could use the more informative years to 
inform the central tendency of the proportions mature-at-age (πa). However, this formulation assumes 
that the central tendency does not change over time (all brood year proportions are drawn from the 
same multivariate distribution) which may not be realistic given size-selective fishing pressure and 
potentially biased age sampling. These topics will be dealt with in more detail in Chapter 3. 
 The slow mixing behavior of the maturation schedule required a large number of posterior 
samples to be drawn with a wide thinning interval to achieve convergence. This resulted in long run 
times for the integrated model, nearly 24 hours. The post-hoc model only required approximately eight 
hours to complete the same number of posterior samples and burn-in period. This extended time period 
is cumbersome when running a large amount of sensitivity analyses, like those presented in this chapter, 
but is relatively irrelevant when the model has been finalized and needs only to be run once every year. 
This disadvantage was expected and is consistent with the literature (e.g., Maunder and Punt 2013) as 
the integrated analysis was a more complex model involving more priors, data, and likelihoods than the 
post-hoc model in the sequential analysis. 
 I presented this analysis as moving further down the continuum towards fully integrated 
analyses because there are still estimates that are passed to the model as “data” (in the sense that they 
are fit to in the joint likelihood). One key example is the mark-recapture estimates which represent a 
summary of a large number of tagged and recaptured fish observations. It would be possible to 
incorporate the mark-recapture estimation model within this assessment to make it more fully 
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integrated, however, these analyses have shown that this is likely not necessary. It seems that fitting to 
their estimates and including their uncertainty in the form of a CV is an adequate expression of the 
information content of these data. 

Integrated analyses, particularly Bayesian state-space models, are gaining popularity throughout 
the state of Alaska and in the stock assessment and ecological literature as a whole (Maunder and Punt 
2013; Schaub and Abadi 2011). The overall theme of using a Bayesian state-space framework for 
addressing the problems in the traditional spawner-recruit analysis is apparent in the present analysis. 
The traditional spawner-recruit analysis yielded a higher α value which is potentially positively biased 
due to the time series problems inherent to the linear regression approach, as noted by Walters (1985) 
and Walters and Ludwig (1981). However, this did not lead to systematically higher or lower estimates 
of biological reference points, as one might expect. Outside of the similar reference point estimates 
under the traditional approach, it was clear that the Bayesian state-space approaches increased the 
uncertainty in these quantities, likely due to the incorporation of measurement error into the spawner-
recruit analysis. This alone is a meritorious reason to favor the state-space spawner-recruit approach. If 
one is to manage a stock based on biological reference points, it is critical that the uncertainty in those 
quantities be fully addressed and taken into account in management objectives and actions.  

Other investigators have shown promise for the Bayesian state-space approaches to spawner-
recruit analyses for Pacific salmon including Meyer and Millar (2001) using pink salmon data from the 
Fraser River in British Columbia, the aforementioned Fleischman et al. (2013) analysis on the Karluk 
River Chinook salmon stock, Fleischman and Borba (2009) with Yukon fall chum salmon, the work with 
Kenai Chinook salmon stocks by McKinley and Fleischman (2013) and Fleischman and McKinley (2013), 
and a meta-analysis of Alaskan Chinook stocks by Catalano (2012). All of these analyses used the 
Bayesian state-space spawner-recruit analysis framework presented here (although some were two-step 
analyses) and found reasons to suggest that this approach is superior to the traditional linear regression 
technique in terms of dealing with statistical problems and accounting for measurement error. Clearly, 
this approach is general enough for application to many different stocks and flexible enough to deal with 
multiple different species of anadromous Pacific salmon with various life histories and population 
parameters.   
 Although the integrated model and the two-step analysis provided very similar overall 
estimates, there are still advantages to the integrated analysis. The most obvious reason is that the 
whole process is contained in a single model, which makes for straightforward implementation by 
biologists and a seamless framework for sensitivity analysis. All of the sensitivity scenarios presented in 
this chapter were conducted by changing several lines of code and re-running the model. Under the 
two-step approach, one would have to alter the run reconstruction, make note of the changes, and then 
pass the altered estimates through to the post-hoc model. In the integrated analysis, this process was 
seamless, and any changes in the model were reflected in a single joint posterior probability 
distribution. Another advantage to the integrated analysis is the fact that separating the analysis into 
two stages forces the run reconstruction model to estimate each year’s abundance in isolation of all 
other data (with the exception of the common tributary scalars across all years within a single project). 
There is no intrinsic link between years under the run reconstruction, however, there is in reality. In the 
real system, counts made in four consecutive years are all counting some proportion of fish that were all 
from the same brood year produced by the same number of spawners, creating a link between years. 
Integrating the analysis allows the run estimates to be informed by the spawner-recruit analysis (and 
vice-versa) which accounts for this very real time linkage which ultimately leads to a more realistic 
model, regardless of how similar the estimates are to the two-step approach. This sort of information 
sharing is one of the primary advantages to an integrated analysis (Maunder 2011; Maunder and Punt 
2013). One could argue that integrated models like the one presented in this chapter are advantageous 
purely because of this added realism.  
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Table 1. Escapement indices on the tributaries of the Kuskokwim River used by Bue et al.’s (2012) run 
reconstruction and the integrated model. Years operational are not necessarily consecutive.  

Project Type Tributary Years in Data First Year in 
Data 

Weirs Kwethluk 13 1992 

 
Tuluksak 18 1991 

 
George 16 1996 

 
Kogrukluk 29 1976 

 
Tatlawiksuk 15 1999 

 
Takotna 16 1996 

Aerial Surveys Kwethluk 11 1977 

 
Kisaralik 21 1978 

 
Tuluksak 12 1977 

 
Salmon (Aniak) 29 1978 

 
Kipchuk 22 1987 

 
Aniak 20 1981 

 
Holokuk 13 1993 

 
Oskawalik 19 1987 

 
Holitna 17 1976 

 
Cheeneetnuk 21 1977 

 
Gagaryah 19 1977 

 
Pitka 11 2001 

 
Bear 16 1976 

 
Salmon (Pitka) 26 1977 
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Table 2. Spawner-recruit parameters and biological reference points from three models.  Traditional 
refers to a basic ordinary least squares linear regression model that does not allow for autocorrelated 
recruitment residuals. Values in parentheses are 95% credible intervals for the two Bayesian models 
(Post-Hoc and Integrated) and 95% bootstrapped confidence intervals for the traditional model, 
obtained by randomizing the regression residuals, adding them to the predicted values, and refitting the 
model as per Hamazaki et al. (2012).   
 

Value Traditional SR Post-Hoc Model Integrated Model 

α 7.29 
(5.62-9.34) 

6.03 
(2.39-11.74) 

6.33 
(2.45-12.36) 

    

β 9.07E-6 
(7.70E-6-1.04E-5) 

8.88E-6 
(6.39E-6-1.14E-5) 

8.91E-6 
(6.33E-6-1.17E-5) 

    

σR 0.29 
(0.20-0.36) 

0.24 
(0.16-0.35) 

0.23 
(0.15-0.34) 

    

ϕ — 0.81 
(0.49-0.98) 

 0.81  
(0.50-0.98) 

    

D — 78.59 
(42.50-139.80) 

75.28 
(42.25-134.23) 

    

π1 — 0.19 
(0.17-0.22) 

0.19 
(0.17-0.22) 

    

π2 — 0.39 
(0.36-0.42) 

0.39 
(0.36-0.42) 

    

π3 — 0.39 
(0.36-0.42) 

0.39 
(0.35-0.42) 

    

π4 — 0.03 
(0.02-0.04) 

0.03 
(0.02-0.05) 

    

SMSY 
80,041 

(73,829-87,551) 
76,985 

(56,506-102,696) 
77,944 

(56,232-104,722) 
    

SMAX 
110,458 

(96,546-129,888) 
115,167 

(87,483-156,464) 
115,069 

(85,419-157,951) 
    

Seq 223,593 
(210,329-237,917) 

211,188 
(139,156-324,362) 

215,338 
(139,760-332,249) 
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Figure 1. Estimated total run abundance (upper) and corresponding CVs (lower) from three models: the 
Bue et al. (2012) run reconstruction (MLE RR), the Hamazaki et al. (2012) post-hoc spawner-recruit 
analysis (Post-Hoc SR), and the integrated model.   
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Figure 2. Spawner-recruit relationships from the integrated (upper) and post-hoc (lower) models. Error 
bars on points represent the 95% Bayesian credibility intervals on escapement-recruitment pairs and 
gray curves are 95% Bayesian credibility intervals for predicted recruitment given stock size. The dashed 
line represents 1:1 replacement.  
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Figure 3. Proportionality coefficient estimates from the integrated model (gray bars) and the Bue et al. 
(2012) run reconstruction. (W) denotes a weir project and (A) denotes an aerial survey. Error bars are 
95% Bayesian credibility intervals and 95% confidence intervals for the integrated and Bue et al. (2012) 
models, respectively.  
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Figure 4. Over-dispersion parameter estimates from the integrated model (gray bars) and the Bue et al. 
(2012) run reconstruction (white bars). Error bars are 95% Bayesian credibility intervals and 95% 
confidence intervals for the integrated and Bue et al. (2012) models, respectively.  
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Figure 5. Harvest residuals from the integrated model under three observation CV sensitivity scenarios. 
Each scenario was conducted in isolation of the others. 
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Figure 6. The effect of changing the observation variance on the mark-recapture estimates reported by 
Schaberg et al. (2012). Uncertainty on Schaberg et al. (2012) estimates are shown as ±1SD; the Bayesian 
models are 95% credibility intervals. Only years with mark-recapture estimates are shown.  
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Figure 7. The effect of changing the mark-recapture estimate of drainage-wide escapement by ± 5%, 
10%, and 20% on the expected escapement in those years.  
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Figure 8. The effect of changing the mark-recapture estimate of drainage-wide escapement by ± 5%, 
10%, and 20% on the expected escapement in all years.  
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APPENDIX A. INTEGRATED MODEL CODE 
model{ 
  ### Spawner-Recruit with Autocorrelated lag-1 residuals: for years with spawner/recruit link 
  lnalpha ~ dnorm(0,1.0E-2) %_%I (0,6) 
  beta ~ dunif(0,10)  
  for (y in (A+a.min):(Y+A-1)) { 
    log.R[y] ~ dnorm(log.R.mean2.a[y], tau.white) 
    R[y] <- exp(log.R[y]) 
    log.R.mean1.a[y] <- lnalpha + log(S[y-a.max]) - beta * S[y-a.max] 
    log.resid.a[y] <- log(R[y]) - log.R.mean1.a[y] 
    ### RPS: Return per spawner 
    RPS.a[y] <- R[y]/S[y-a.max] 
  } 
  log.R.mean2.a[A+a.min] <- log.R.mean1.a[A+a.min] + phi * log.resid.0 
  for (y in (A+a.min+1):(Y+A-1)) { 
    log.R.mean2.a[y] <- log.R.mean1.a[y] + phi * log.resid.a[y-1] 
  } 
   
  ### monitoring quanities that don't start at y = 1; JAGS quirk 
  log.resid <- log.resid.a[(A+a.min):(Y+A-1)] 
  RPS <- RPS.a[(A+a.min):(Y+A-1)] 
  log.R.mean1 <- log.R.mean1.a[(A+a.min):(Y+A-1)] 
  log.R.mean2 <- log.R.mean2.a[(A+a.min):(Y+A-1)] 
   
  ### Priors for SR portion 
  phi ~ dunif(-1,0.99)                                        
  tau.white ~ dgamma(0.01,0.01)         
  log.resid.0 ~ dnorm(0,tau.red) 
  tau.red <- tau.white * (1-phi*phi) 
  sigma.white <- 1 / sqrt(tau.white) 
  sigma.red <- 1 / sqrt(tau.red) 
  alpha <- exp(lnalpha) 
   
  ### Biological Reference Points 
  lnalpha.c <- lnalpha + (sigma.white * sigma.white / 2 / (1 - phi * phi)) 
  S.max <- 1 / beta 
  S.eq <- lnalpha.c * S.max 
  S.msy <- S.eq * (0.5 - 0.07 * lnalpha.c) 
   
  ### Brood year returns without SR link; drawn from a common lognormal dist 
  mean.log.R0 ~ dnorm(0,1.0E-4)         
  tau.R0 ~ dgamma(0.1,0.1)       
  R.0 <- exp(mean.log.R0) 
  sigma.R0 <- 1 / sqrt(tau.R0) 
  for (y in 1:a.max) {  
    log.R[y] ~ dnorm(mean.log.R0,tau.R0)    
    R[y] <- exp(log.R[y]) 
  } 
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  ### Generate Y+A-1=41 maturity schedules, one per brood year 
  ### Proportion mature (returning to spawn) at age modeled as drawn from a dirichlet distribution 
across brood years   
  D.scale ~ dunif(0,1) 
  D.sum <- 1 / (D.scale * D.scale) 
  prob[1] ~ dbeta(1,1) 
  prob[2] ~ dbeta(1,1) 
  prob[3] ~ dbeta(1,1) 
  pi[1]<- prob[1] 
  pi[2] <- prob[2] * (1 - pi[1]) 
  pi[3] <- prob[3] * (1 - pi[1] - pi[2]) 
  pi[4] <- 1 - pi[1] - pi[2] - pi[3] 
   
  for (a in 1:A) { 
    gamma[a] <- D.sum * pi[a] 
    for (y in 1:(Y+A-1)) {                                                     
      g[y,a] ~ dgamma(gamma[a],1.0) 
      p[y,a] <- g[y,a]/sum(g[y,]) 
    } 
  } 
   
  ### Calculate the numbers at age matrix as brood year recruits at age*proportion that matured that 
year 
  for (t in 1:Y) { 
    for (a in 1:A) { 
      N.ta[t,a] <- R[t+A-a] * p[t+A-a,a] 
    } 
  } 
   
  ### Calculate escapement as N-Harvest, after modeling harvest in both commercial and subsistence 
fisheries 
  for (t in 1:Y) { 
    N[t] <- sum(N.ta[t,1:A]) 
    S[t] <- N[t] * (1-U[t]) 
    log.S[t] <- log(S[t]) 
     
    #taus for harvest as known data 
    sigma.H.com[t] <- sqrt(log(pow(cv.H.com[t],2)+1)) 
    tau.log.H.com[t] <- 1/pow(sigma.H.com[t],2) 
    sigma.H.sub[t] <- sqrt(log(pow(cv.H.sub[t],2)+1)) 
    tau.log.H.sub[t] <- 1/pow(sigma.H.sub[t],2) 
     
    U[t] ~ dunif(0.0001, 0.9999)  
    p.com[t] ~ dunif(0.0001, 0.9999) 
     
    u.com[t] <- U[t]*p.com[t] 
    u.sub[t] <- U[t]*(1-p.com[t]) 



63 
 
 

     
    pred.com.catch[t] <- u.com[t]*N[t] 
    pred.sub.catch[t] <- u.sub[t]*N[t] 
     
    log.pred.com.catch[t] <- log(pred.com.catch[t]) 
    log.pred.sub.catch[t] <- log(pred.sub.catch[t]) 
     
    com.cat[t] ~ dlnorm(log.pred.com.catch[t], tau.log.H.com[t]) 
    sub.cat[t] ~ dlnorm(log.pred.sub.catch[t], tau.log.H.sub[t]) 
     
    ### Multinomial scale sampling on total annual return N 
    for (a in 1:A) { 
      q[t,a] <- N.ta[t,a] / N[t] 
    } 
    x[t,1:A] ~ dmulti(q[t,],n[t])   
  } 
   
  ### ASSESSMENT SUBMODEL ### 
   
  ### Escapement Indices 
  for (j in 1:20) {  
    r[j] ~ dgamma(0.001, 0.001) 
    k[j] ~ dnorm(10, 1E-8) 
  } 
   
  #Negative binomial likelihood on weirs and aerial surveys 
  for (i in 1:num.index) {        
    est.esc[i] <- S[esc.year[i]] / k[trib[i]] 
    p.esc[i] <- r[trib[i]] / (est.esc[i] + r[trib[i]]) 
    index[i] ~ dnegbin(p.esc[i], r[trib[i]]) 
  } 
   
  ### Weekly commericial CPUE 
  tau.cat~dgamma(0.001, 0.001) 
  for (q in 1:3) { 
    ln.Q[q] ~ dnorm(0, 1E-10) 
    Q[q] <- exp(ln.Q[q]) 
  } 
  q.unr <- Q[1] 
  q.res <- Q[2] 
  q.mono <- Q[3] 
   
  ### estimated commercial catch and fitting it to obs 
  for (i in 1:num.com) { 
    est.c.catch[i] <- log(pp[i] * N[c.year[i]] * (1 - exp(-Q[gear[i]] * effort[i]))) 
    catch[i] ~ dlnorm(est.c.catch[i], tau.cat) 
  } 
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  ### in river likelihood. using total estimated escapement (mark recap+lower river expansion).  Keeps 
model internally consistent. 
  for (i in 28:32) { 
    inr.s[i] ~ dlnorm(log.S[i], tau.inr.s[i]) 
  }     
} 
 
### END MODEL CODE ### 
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CHAPTER 3 
 

DESCRIPTION OF THE KUSKOKWIM RIVER CHINOOK SALMON RUN RECONSTRUCTION AND AN 
INVESTIGATION OF DATA WEIGHTING: A REPORT TO THE KUSKOKWIM RIVER SALMON 

MANAGEMENT WORKING GROUP 
 

Ben Staton and Matt Catalano, Auburn University; Lew Coggins, US Fish and Wildlife Service; Bill Bechtol, 
Association of Village Council Presidents, Bechtol Research; Dan Gwinn, Biometric Research, LLC 

 
ABSTRACT 

• This document is the result of a suite of independent analyses investigating the consequences 
of different ways of weighting weir and aerial survey data in the run reconstruction model.   
All of the authors have statistical training and experience with models like the run 
reconstruction model and voluntarily took on this task. 

• The run reconstruction model is a tool to estimate annual Chinook salmon run abundance in 
the Kuskokwim River since 1976.  The model uses observed data from weirs, aerial surveys, 
harvest, and total abundance estimates based on a mark-recapture study to estimate a 
historical run abundance time series.  We conclude that the model structure is generally 
consistent with broadly applied and accepted stock assessment modeling approaches. 

• We investigated the results of 5 different models. Four of the models were different 
approaches to weighting weirs and aerial surveys, and the fifth incorporated the 2014 mark-
recapture abundance estimate: 

o ADF&G base model: individual weights are estimated for each escapement monitoring 
project. 

o Pooled weights model: a common weight is estimated for all weir projects and one 
common weight is estimated for all aerial survey projects. 

o No 2014 weirs model: 2014 weir counts are excluded from the ADF&G base model. 
o No 2014 aerial surveys model: 2014 aerial surveys are excluded from the ADF&G base 

model 
o With MRC model: the ADF&G model including the 2014 mark-recapture estimate. 

• All of the models resulted in the same major conclusion that the 2014 run was lower than 
average and the drainage-wide escapement goal was met. 

• The estimated weights for weirs were higher than for the aerial surveys, which means that, all 
else being equal, the model’s predictions will more closely match the weir data overall. 

• Retrospective analyses showed that the ADF&G base model run estimates varied more than 
the pooled weights model as more data were added, but neither model exhibited worrisome 
retrospective patterns. 

• The ADF&G base model exhibited an undesirable tendency to perfectly fit to one of the weir 
time series in some years.  This behavior is extreme and warrants further investigation and 
consideration of alternate models because it suggests that in those cases the model treated one 
of the weirs as a perfect indicator of escapement.  This extreme behavior occurred in two out of 
eight years in the retrospective analysis: 2007 and 2010.  Both of these years were not years in 
which the model was used to make management decisions. 

• Future modeling efforts should continue to investigate alternate weighting schemes and 
model structures.  The pooled weights model we constructed represents a sensible first step in 
this direction, but there are likely many other potential model structures that could be 
considered. 
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INTRODUCTION 
During the Kuskokwim River Salmon Management Working Group session of the Kuskokwim Area 

Interagency Meeting held in Bethel, AK in March 2015 there were several important inquiries regarding 
the run reconstruction model.  These questions included:  

• How does it work?  
• Which data have the most influence (i.e., weight)?  
• Are there other ways of weighting the data components, and have these been considered? 

The latter two questions have come up before with biologists and biometricians and were discussed 
prior to the Interagency Meeting.  For example, some of the sensitivity analyses presented in this report 
have been previously conducted by the model developers and others using older versions of the model.   

There are two primary objectives of this report.  First is to answer the above questions and 
make clear why this issue of weighting has recently been raised.  The second objective is to elaborate on 
issues related to data weighting by conducting several analyses to demonstrate how the data weighting 
works.  This report will summarize and present the major findings from these analyses for working group 
and agency consideration. 

The run reconstruction model is a tool that biologists and managers use to estimate how many 
Chinook salmon have been coming back to the river annually since the 1970s. The model was developed 
by Brian Bue and other assessment scientists and was completed in 2012 (Bue et al. 2012).  The original 
report can be accessed at: http://www.adfg.alaska.gov/FedAidpdfs/FDS12-49.  There have been several 
small changes to that model in 2014, as noted in this memorandum from Hamazaki and Liller (2015): 
http://www.adfg.alaska.gov/static/fishing/PDFs/commercial/kuskokwim/2014RunReconMemo.pdf.   

 
How does the Kuskokwim River Chinook Salmon Run Reconstruction work? 

To estimate run abundance, the model needs two major components.  First, it needs data on 
how many fish are in the river each year.  These data come primarily from weirs, aerial surveys, harvest 
estimates, and mark-recapture studies.  Second, it needs some way to relate those data to actual 
numbers of fish, since we can’t possibly count all the fish each year.  The model represents a rational 
approach to combining information from all of the data types and sources to estimate how many 
Chinook salmon have been returning annually to the Kuskokwim River.  The general model formulation 
and its assumptions are broadly consistent with commonly applied stock assessment modeling 
practices. 

 
Weirs and Aerial Surveys 

The weirs and aerial surveys are treated as indices of escapement, which means that they are 
not complete counts, but instead represent relative changes in escapement over time in each tributary.  
The model predicts how many fish should be observed at each weir or in each aerial survey by assuming 
escapement to each tributary is proportional to the drainage-wide escapement.  These proportions are 
assumed to be constant over time and are estimated by the model (i.e., the data is used to inform the 
model about the tributary proportions).  The model then compares how many fish were actually 
counted in each tributary to these predictions.  If the predictions differ greatly from the data, the model 
adjusts the run abundance and proportions so that the predicted counts are closer to the actual counts 
that were observed.   

 
Mark-Recapture Studies 

How do we deal with tributaries that do not have weirs or aerial surveys?  The majority of 
Chinook salmon producing tributaries are not monitored and if we want to know the total escapement 
each year, we need a way to expand the weir and aerial survey counts to the whole drainage.  A mark-
recapture study can provide information for such an approach.  The mark-recapture study was an 

http://www.adfg.alaska.gov/FedAidpdfs/FDS12-49
http://www.adfg.alaska.gov/static/fishing/PDFs/commercial/kuskokwim/2014RunReconMemo.pdf


67 
 
 

experiment in which biologists captured and tagged fish at Kalskag, then “recaptured” the tagged fish 
upstream at weirs later in the run.  By comparing the number of marked versus unmarked fish observed 
at weirs, the biologists were able to estimate how many fish passed upstream of the tagging site.  The 
methods for the 2003-2007 mark-recapture study and the resulting estimates are provided in Schaberg 
et al. (2012). The mark recapture estimates, along with observed harvests and escapement estimates 
based on drainage-area for streams downstream of the tagging site, are used in the model to scale up 
the weir and aerial survey counts to a total drainage-wide abundance of fish for a given year.  One way 
to think about this is that the weirs and aerial surveys inform the ups and downs of how many fish there 
are from year to year, and the mark-recapture estimates specify the actual total number of fish, which 
allows for the model to estimate how many fish there are in the whole drainage without actually 
counting them all every year. 

 
Commercial Catch and Effort 

There is also a component that uses the historical catch and effort from the commercial fishery.  
We all know that when there are lots fish in the river, commercial fishers don’t need to spend as much 
time catching fish as they would if there were fewer fish in the river.  In years in which many fish were 
caught with little effort, the model predicts that there were many fish in the river that year.  In recent 
years, this component has had minimal impact on the model since there is no directed commercial 
fishery for Chinook salmon.  The component is still included because there are data from the 1970s and 
1980s when the commercial component was more extensive that can provide information on total run 
abundance in those years. 

 
End Result 

Of course there are statistical complexities surrounding how the model adjusts its predictions to 
match the data we observed.  Essentially, the model adjusts the run abundance estimates by trial-and-
error until it minimizes the differences between the model predictions and the observed data across all 
data sources.  The resulting run abundance estimates are those that make the data we observed for the 
past approximately 40 years most likely to have occurred.  Another way to think about this is that the 
model’s run abundance estimates are those that best explain all of our observations. 

 
Which data are most influential in the model? 

This question has to deal with an issue known as “data weighting”.  Data weighting means that 
the model is influenced by some data more than others.  Another way to say this is that when two 
datasets disagree (i.e., one says there are lots of fish, another suggests there are few fish), which dataset 
does the model follow more closely? 

If the model weighted all datasets the same, for example weirs and aerial surveys, then the 
model would tend towards the average abundance suggested by all of them.  However, if the weirs are 
weighted more heavily, then the model will follow the weir patterns in escapement trends more closely 
than patterns suggested by the aerial surveys.  

Ideally, weirs and aerial surveys would agree perfectly all the time.  However, this is not the case 
since the two methods of counting fish are very different.  An aerial survey is a pure index of 
escapement, that is, its counted value is related to the true escapement in that tributary, but it is not an 
attempt to be a complete count.  Weirs are nearly complete counts, however there are factors that 
prevent them from being entirely complete counts (e.g., it was not possible for the weir to be functional 
during the entirety of the run).  Because of these missed counts, weirs are also indices, but they are 
more representative of the true number of fish escaping to that tributary than are aerial surveys.  This 
might suggest that we should have more trust in what the weirs tell us than what the aerial surveys tell 
us, or in other words, place more weight on weirs.   
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As the model is currently formulated, it is “self-weighting.”  That is, the model uses the data to 
determine which data sources provide the most consistent information about total run size and places 
the most weight on them.  When working properly, this is very desirable since it removes the 
subjectivity of biologists, managers, and stakeholders deciding on which data are best and by how much.  
However, it can also lead the model to behave counterintuitively.  For example, it is possible for the 
model to heavily weight a very small aerial survey that does not really reflect what is happening in the 
whole drainage, just because the data collected in that tributary are less variable through time than 
other tributaries.  This is problematic when data sources are contradictory.  In this case, one must 
decide which data to most believe: the consistent but small aerial survey or a larger one that we think is 
more representative of the total escapement?  These types of scenarios inevitably must be confronted 
in nearly all stock assessment models. 

 
Why is data weighting an issue in 2014? 

In 2014, there was substantial disagreement among the various assessment projects relative to 
the implications of drainage-wide escapement size.  In particular, the Kogrukluk, Kwethulk, and Tuluksak 
River weirs, along with the Cheeneetnuk and Holokuk River aerial surveys, indicated that the overall run 
was much smaller than suggested by the Pitka Fork of the Salmon, Kipchuk, and Aniak River aerial 
surveys.  The disagreement among the estimates based on these individual assessment projects can be 
easily seen in Figure 3 of the Hamazaki and Liller (2015) memo.  While disagreement among individual 
assessment projects is not unexpected, the level of disagreement among the 2014 assessment projects 
was relatively severe and is partially responsible for the high uncertainty in the 2014 estimate.  The 
coefficient of variation (a relative measure of estimator uncertainty) of the 2014 run abundance 
estimate was 15% and was the largest coefficient of variation since 1996.  Additionally, the model 
potentially down-weighted the information from the Kogrukluk and Kwethluk weirs more than was 
appropriate based on the relative size of these systems and the greater accuracy of weir data relative to 
aerial survey data (Table 1).  In contrast, the model possibly placed too much weight on the relatively 
small Tatlawiksuk River information and some of the higher, but potentially less accurate, aerial survey 
counts.  While it is impossible to know what the perfect data weighting scheme should be, this model 
behavior is troubling if we assume that the weirs on the larger systems are a more reliable indicator of 
drainage-wide escapement trends.  This issue prompted us to investigate the behavior of how the 
different data sources are weighted in the model, particularly for weirs and aerial surveys. 
 
How did we investigate the weighting behavior? 

We have used two approaches to investigate this question, as outlined below.  These 
approaches are standard in stock assessments to diagnose model behavior and are often required 
before considering an assessment complete.  

 
Sensitivity Analyses 

A sensitivity analysis is a way of testing what impact a component of the model has on the 
output (e.g., the abundance estimates).  Essentially, we change something about the model formulation 
and see how much the output changes.  If the output changes a lot compared with the original model, 
then we infer that the component we changed has a large influence in the model.  This exercise is 
important to allow us to see what would happen if we make different assumptions about how the 
model works.  The idea is that when we cannot be perfectly certain of the best way to formulate the 
model, we can try several different variations of the model to see if they paint a different picture 
regarding run abundance.  With regard to the question of how the model should weight the aerial 
survey data versus the weirs, for example, we can force the model to weight weirs and aerial surveys in 
a variety of different ways, and see how much it matters in terms of the run abundance estimates.  This 
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approach allows us to explore a range of possible models rather than having to decide on a single model 
when we lack an objective way to decide. 

 
Retrospective Analyses 

A retrospective analysis is an exercise in which we go back in time, so to speak.  We pretend that 
we were back in 2007 and ignore all of the data collected between then and now and run the model.  
Then we include data from 2008 and run the model, then 2009, 2010, and so on up until the present.  By 
doing this, we can look at how the model results change as we accumulate more and more data.  If 
there are conflicts in the data, or the data weightings change over time then we might expect the model 
estimates to change more as we accumulate data.  We are particularly interested in how the model 
chooses which data sources to weight over time and how much the weightings change when we add 
new data.  This can help shed light on how the model selects which data are most important (i.e., aerial 
surveys versus weirs), which could indicate whether there are potential errors in the model estimates. 

 
METHODS 
Sensitivity Analyses 

We formulated five models that differed mainly in how weirs and aerial surveys were weighted 
and also included a model that incorporated the preliminary 2014 mark-recapture drainage-wide 
abundance estimate.  Table 2 describes the different model structures and combinations included in the 
sensitivity analysis. 

Each of these scenarios represents a separate run of the model and each one was chosen 
strategically to illustrate how the weirs and aerial surveys impacted the model estimates.  The first two 
scenarios were different model structures: the first allowed each individual project (i.e., individual weirs 
and aerial surveys) to have a different weight whereas the second forced all weirs to have the same 
weight and all aerial surveys to have the same weight.  This approach was useful because if the model 
tended to track a particular aerial survey or weir count very closely at the expense of the others for no 
rational reason, then it may make sense to consider another weighting scheme such as pooling the 
weights by project type (i.e., weirs versus aerial surveys).  This approach would prevent the model from 
picking one particular survey and following it too closely.  We call this the “pooled weights model” for 
comparison with the ADF&G base model, which we call the “separate weights model.” 

A more extreme data weighting scheme that is often employed in sensitivity analyses is to 
assign zero weight to a particular dataset to assess the effect of its complete removal.  With this 
approach, we can bound the extremes suggested by each type of data.  We used this approach by 
removing (i.e., assigning a zero weight) the 2014 weir data and look at how much larger the aerial 
surveys suggest the 2014 run was.  We then did the same for the aerial surveys.  Finally, the last model 
scenario included the 2014 mark-recapture estimate, which is an independent estimate of drainage-
wide abundance.  Its inclusion allowed us to investigate which data were consistent with this estimate.  
Please note that the 2014 mark-recapture drainage-wide abundance estimate provided by ADF&G is 
preliminary and could change depending on the outcome of continued internal review by staff 
biometricians. 

 
Retrospective Analysis 

We conducted two separate retrospective analyses: one was conducted using the separated 
weights model and one used the pooled weight model.  We conducted a separate retrospective analysis 
for each of these models to investigate the influence of the model formulation (i.e., how it dealt with 
weights: separate or pooled) on (1) which projects had the largest estimated weight overall and (2) 
whether or how much the weights changed as more data accumulated.  We started the retrospective 
analysis in 2007 as this was the last year of the original mark-recapture studies (Schaberg et al. 2012).  
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Starting after all of the original mark-recapture studies were completed allowed for all of the scaling 
information provided by those projects to be included in all of the retrospective model runs.  Thus, any 
differences in the model estimates across subsequent model runs (i.e., as additional years of data are 
included) could be attributed mostly to how the model dealt with weir and aerial survey counts in those 
years. 

All models were run using the model code provided in Hamazaki and Liller (2015).  We made 
minor changes when warranted by the particular model scenario (e.g., removing particular data, pooling 
weights, etc.). 

 
RESULTS 

When conducting these analyses, we discovered that we could not exactly reproduce the 
estimates reported by Hamazaki and Liller (2015).  A detailed investigation of this phenomenon 
indicated that the parameter bounds in the ADF&G model (separate weights model) were too narrow to 
allow the model to freely estimate all of the parameters.  Parameter bounds are simply upper and lower 
caps on parameter values (e.g., run abundance).  They are commonly applied in stock assessments to 
prevent the models from inadvertently choosing implausible parameter values during the statistical 
trial-and-error estimation process.  In the Kuskokwim Chinook model, the parameter bounds for the 
weights were not high enough such that one of the model weight estimates was pushed up against the 
bound, which means that the true estimate was likely outside the bound and suggests that the model 
was overly constrained by the bound.  That is, the model was not allowed to estimate parameter values 
that fully satisfied the data.  For our analyses, we loosened this constraint, which resulted in changes of 
1-2% for the 2014 run estimate.  For this reason, the estimates in this document do not exactly match 
those presented in the memo by Hamazaki and Liller (2015), but the difference is small.   

Additionally, when comparing our estimates to those presented in Hamazaki and Liller (2015), 
we discovered an error in how the estimates were reported.  The order of the over-dispersion 
parameters (or weights, as they are referred to in this document) for the aerial surveys was 
inadvertently shuffled in the memo (see Table 2 in Hamazaki and Liller [2015]).  For this reason, the 
weights that we report will differ from the memo.  We have informed ADF&G of these issues.   

 
Sensitivity Analyses 

The primary measure we used to compare the different scenarios was the 2014 run abundance 
estimated by each model, as shown in Table 3 and Figure 1, below. 

The model structure clearly influenced the 2014 run estimate, but relative to the larger picture, 
these differences were small.  The error bars are 95% confidence intervals, which is an estimate of 
uncertainty and represents how confident we are in the abundance estimate.  The 95% confidence 
intervals on escapement were calculated by subtracting the total harvest estimate from the upper and 
lower bounds of the total run confidence interval, which ignores the uncertainty in the 2014 harvest 
estimate (which is considered to be minimal in this model).  When we pooled the weights across project 
type (one weight for all the weirs and one weight for all the aerial surveys), the estimate was 15% 
smaller than when we estimated a different weight for each project.  This finding resulted from the 
pooled model placing more weight on weirs that suggested a smaller run than did the aerial surveys in 
2014.  This model behavior was further demonstrated when we examined the next two points in Figure 
1.  When we excluded the 2014 weir data, the model predicted a higher 2014 run abundance and when 
we totally excluded the 2014 aerial survey data, the model predicted a lower 2014 run abundance. 
Finally, the model that considered the preliminary abundance estimate from the 2014 mark-recapture 
project produced the lowest estimated 2014 run abundance.  Considering estimates across this set of 
sensitivity analyses provided a relatively complete characterization of the uncertainty in the run 
reconstruction among a wide set of options related to model structure and data considered.  The 
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important thing to keep in mind is that no matter which scenario you look at, the main conclusion is the 
same: the 2014 run was smaller than average and the drainage-wide escapement goal was met. 

However, these findings pertain just to 2014.  Since the model reconstructed the run abundance 
time series going back to 1976, it is important to look at how changing the model structure affected the 
whole time series.  Figure 2 shows what happened when we compared the separated weights model 
(which is the ADF&G base model) to the pooled weights model: 
 The run estimates from the pooled weights model fell within the 95% confidence intervals of the 
separated weights model nearly every year, with the exception of 1988.  Based on this finding, we can 
conclude that the run estimates from these two models are similar.  Several of the estimates from the 
other scenarios fall within this confidence interval as well.  The only scenario that did not result in a 
2014 run estimate within the confidence intervals of the ADF&G base scenario model (separated 
weights model) was the model with the 2014 mark recapture estimate included (solid triangle), but it 
was very close to being within the interval. 
 
Retrospective Analyses 
Figure 3 depicts how the weights for the two project types changed overtime as more data were added 
using the pooled weights model. 
 Weir data were weighted more heavily than aerial survey data in the pooled weights model.  
The estimated weights from this model were consistent as more data were added.  In contrast, 
estimated data weightings from the separate weights model varied drastically for some datasets (larger 
numbers mean it had more influence on the model; note the different magnitude of the axes for certain 
projects, Figure 4). 

In particular, the model estimated extremely large weights for the Kwethluk weir in 2007 and 
Tatlawiksuk weir in 2010, for reasons that are not obvious.  We investigated this behavior further by 
plotting the model predictions versus the observed data points for those years.  Figure 5 shows 
observed and predicted escapement counts for the retrospective model run using data through 2007 
when the Kwethluk weir received an extremely large weight.  Figure 6 shows the same information but 
for the retrospective model run using data through 2010 when the Tatlawiksuk weir received an 
extremely large weight.  The line on each graph depicts a model prediction that is exactly the same as 
the observed data, so points that fall closer to the line indicate that the model followed that dataset 
very closely for that year.  Figures 5 and 6 indicate that the model fit the Kwethluk weir and Tatlawiksuk 
weir data perfectly in 2007 and 2010, respectively, because all of the data points fall exactly on the line.  
We were unable to identify the reason that the model adjusted its estimates so that they perfectly fit 
the observed data for those weirs in those model runs. 

The separated weights model behavior of choosing one dataset and following it precisely at the 
expense of all other information is extreme and abnormal, especially when the chosen dataset changed 
as more years of data were considered.  One way to think about this model behavior is that in 2007 for 
example, the model treated the Kwethluk weir as a perfect representation of escapement for the entire 
drainage, which strains the credibility of the separated model.  The extreme weighting behavior in the 
2007 and 2010 retrospective model runs indicates that there is currently insufficient information in the 
data to allow consistent estimation of a stable and sensible weighting scheme under the separated 
weights model.  The retrospective analysis revealed that if this model had been used to produce 
estimates following either the 2007 or 2010 sampling seasons, it is likely that the analyst would have 
chosen some other method that resulted in a more justifiable set of data source weights. 

In addition to the weights under the pooled and separated model structures, we also 
investigated how the estimated run abundance time series changed under these scenarios as we added 
more years of data, as shown in Figure 7. 
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The run abundance time series from the separated weights model fluctuated more as we added 
data than did the pooled weights model.  Although the overall trend was similar between models, the 
peak years in the early 1990s fluctuated by 10-20% (nearly 100,000 fish) between retrospective runs, 
whereas in the pooled model they fluctuated by 5-10% (~50,000 fish).  Neither model demonstrated 
systematic retrospective bias that is commonly observed in many stock assessments.  An example of a 
systematic bias would be if the abundance estimates consistently trended downward across the board 
with the inclusion of each additional year of data.  Although both of these models behave reasonably 
well in this respect, the pool weights model clearly has less retrospective variation in the abundance 
estimates and does not suffer from the extreme tendency to perfectly fit one of the escapement surveys 
in some years. 

 
DISCUSSION 

These analyses shed light on how the run reconstruction model assigns weights to individual 
datasets.  In general, weirs were weighted more heavily than aerial surveys, which makes sense because 
we should expect the aerial surveys to have larger sampling error.  When we look retrospectively, 
abundance estimates and data weights from the separated weights model fluctuated more as more data 
were added when compared to the pooled weights model.  We have not yet figured out a way to 
quantify what a weight of about 9 for weirs versus a weight of about 3 for aerial surveys exactly means 
(how much more do weirs influence the model than aerial surveys?), but it is sufficient to say that an 
individual weir carries more weight in the model than does an aerial survey with an equivalent number 
of observations. 

While there is still some question of whether it is better to separate the weights by tributary or 
to pool them by project type, our analyses suggest that a pooled weight model should be seriously 
considered.  It is important to note that the pooled weight model is only one approach for dealing with 
the extreme and unsuitable “perfect-fitting” behavior of the separated weights model.  Other weighting 
schemes that we did not investigate could potentially deal with this issue better than the pooled weights 
model.  For example, it would be beneficial to explore whether tributary projects that count more of the 
total escapement should be weighted more heavily (tributaries with more fish get weighted more 
heavily).  For the analyses presented in this document, our intent was to highlight the weighting 
behavior of the current model, not to investigate which (if any) alternate model is better.  These are 
statistical issues and should be discussed and addressed eventually, but they are beyond the scope of 
this document. 

One option for dealing with differences among model formulations would be to run multiple 
models each year and then average their results.  Such a strategy would help to address uncertainty in 
which model is best.  For example, there may be three models: one that separates the weighting by 
each tributary project, one that pools the weights by project type, and one that weights data sources by 
the contribution of that tributary to the total escapement.  The results could then be averaged across 
these models, and this average could be used for the run abundance estimate.  Under this approach, it 
would need to be decided whether each of the models would receive equal treatment, or if there are 
some formulations that are considered more plausible than others.  There are well-established methods 
that have been developed to do these kinds of computations, if this approach were to be pursued in the 
future.   
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Table 1. Overdispersion parameter estimates for each escapement 
project 

Project Type Tributary Mean 
Lower 
95% CI 

Upper 
95% CI 

Weir Kwethluk 5.81 2.61 12.93 

 
Tuluksak 5.00 2.48 10.09 

 
George 12.44 5.14 30.10 

 
Kogrukluk 8.36 4.26 16.41 

 
Tatlawiksuk 23.58 7.72 72.00 

 
Takotna 7.85 3.42 18.02 

Aerial Survey Kwethluk 3.07 1.33 7.07 

 
Kisaralik 1.48 0.84 2.61 

 
Tuluksak 3.37 1.47 7.73 

 
Salmon (Aniak) 2.92 1.74 4.92 

 
Kipchuk 4.22 2.23 8.00 

 
Aniak 8.80 3.86 20.06 

 
Holokuk 1.71 0.82 3.55 

 
Oskawalik 2.18 1.16 4.12 

 
Holitna 4.42 2.16 9.04 

 
Cheeneetnuk 3.27 1.67 6.40 

 
Gagaryah 4.26 2.18 8.34 

 
Pitka 3.58 1.50 8.56 

 
Bear 6.70 3.11 14.43 

 
Salmon (Pitka) 4.78 2.60 8.77 

 
Table 2.  Descriptions of alternative model formulations that were run. 
General Name Description 
Separate weights The model estimates separate weights for each weir and 

aerial survey.  This is the ADF&G base model. 
Pooled weights The model estimates a single weight for all weirs and a 

single weight for all aerial surveys 
Without 2014 Weir Data Run the model without 2014 weir project data, separate 

weights for all projects 
Without 2014 Aerial Data Run the model without 2014 aerial survey data, separate 

weights for all projects 
With 2014 MRC Run the model with 2014 weir and aerial survey data and 

include the 2014 mark-recapture estimate (using the 
separated weights model) 
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Table 3. Run abundance and escapement estimates for alternative model formulations 
 Run Abundance Escapement 

Scenario Mean 
Lower 
95% CI 

Upper 
95% CI Mean 

Lower 
95% CI 

Upper 
95% CI 

ADF&G Base Model 
(Separate Weights) 137,932 102,364 185,857 126,170 90,602 174,095 
Pooled Weights 
 117,411 90,673 152,035 105,649 78,911 140,273 
Without 2014 
Weir Projects 154,962 108,046 222,250 143,200 96,284 210,488 
Without 2014 
Aerial Surveys 105,842 70,023 159,985 94,080 58,261 148,223 
With 2014 
MRC Estimate 97,087 83,423 112,989 85,325 71,661 101,227 
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Figure 1. Run abundance and total escapement estimates (95% confidence intervals) for the year 2014 
from alternative model formulations. 
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Figure 2. Time series of run abundance estimates from alternative model structures. 
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Figure 3. Variation in escapement index weight estimates (overdispersion parameters) for aerial surveys 
and weirs from the pooled weights model. 
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Figure 4. Retective estimates of escapement index weights from the individual weights model. 
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Figure 5. Observed and predicted escapement index counts from the 2007 run of the individual weights 
model. 
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Figure 6. Observed and predicted escapement index counts from the 2010 run of the individual weights 
model . 
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Figure 7. Retrospective run abundance estimates from the pooled weights (upper panel) and separate 
weights (bottom panel) models.  
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CHAPTER 4 
 

A BAYESIAN MODEL TO ESTIMATE KUSKOKWIM RIVER CHINOOK TRIBUTARY RUN TIMING AND 
ABUNDANCE FROM TELEMETRIC MARK-RECAPTURE DATA 

 
ABSTRACT 

 
We conducted a new analysis of the telemetric mark-recapture data from Kuskokwim River 

Chinook salmon from 2003-2007 to demonstrate a new analytical approach that has the potential to 
take advantage of the full range of spatial and temporal information contained in these data.   
Specifically we sought to quantify estimates of abundance and run timing for tributary-specific Chinook 
salmon stocks in the Kuskokwim drainage while simultaneously estimating total escapement upstream 
of the tagging site.  To accomplish this goal, we used a Bayesian modification of the maximum likelihood 
methods described in Bromaghin et al. (2010). Across all years, five of the twelve tributary groups 
(Mainstem [mean proportion = 0.15], Aniak & Middle Tributaries [0.19], Holitna River [0.09], Hoholitna 
River [0.18], and Kogrukluk River [0.11]) were consistently the largest contributing groups to the run 
across all time strata. On average these groups composed 0.72 of the total run. Tributary-specific 
temporal patterns also existed. Chinook salmon from upstream tributary groups tended to complete 
their migrations earlier than those from middle and Holitna tributary groups.  Two upstream tributary 
groups, Upper Kuskokwim Tributaries and Swift River, contributed large proportions to the run during 
the first two time strata (22 June & earlier), but their contributions declined during the final three time 
strata (23 June & later).  While this trend was clearly evident from the run timing proportions from each 
tributary group, the proportional composition of the run indicated that even though these upper 
tributary groups had higher run timing proportions early in the run they were less abundant than middle 
or Holitna tributary groups at the tagging site at this time due to the high abundance of the middle 
tributary stocks. Annual trends in total abundance were similar to those found in Schaberg et al. (2012) 
using the Lincoln-Petersen estimator. While annual trends were similar, the Bayesian model tended to 
predict lower total abundance than Schaberg et al. (2012) in most years (2003-2006; range: 15 – 23% 
lower), with the difference between the Bayesian model and Schaberg et al. (2012) model estimates 
increasing as population abundance increased (Figure 1).  In conclusion, the finer-scale information on 
run timing and abundance provided by the Bayesian model should be useful to ongoing management 
efforts aimed at understanding the diversity of Chinook salmon spawning stocks within the Kuskokwim 
River Drainage. 
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INTRODUCTION 
 
  Pacific salmon populations in large river systems are typically comprised of many distinct 
spawning stocks that mix in the mainstem of rivers, where they are exposed to harvest, before 
segregating into their distinct spawning tributaries. Distinct spawning stocks may differ in their 
abundance, run timing, and other life-history traits due to site-specific factors (Hilborn et al. 2003; 
Waples et al. 2005). The existence of such locally-adapted spawning stocks has been suggested to buffer 
against ecological and environmental stressors because of complementary dynamics of locally-adapted 
stocks (Schindler et al. 2010; Griffiths et al. 2014). Therefore, a key goal of managing Pacific salmon 
species in recent years has been to promote watershed and harvest regulations that protect and restore 
the diversity life-history traits contained within discrete salmon populations (Griffiths et al. 2014). 
 A key challenge in managing mixed-stock fisheries, such as Chinook salmon, can be allocating 
harvest so that a few stocks are not disproportionately exploited. Historically, in the Kuskokwim Basin, 
subsistence Chinook harvest has occurred near the mouth of the river and has been loaded heavily 
towards the front end of the run (Linderman and Bergstrom 2009). This creates the potential to 
adversely affect discrete stocks that consistently run earlier than other stocks. In other Alaskan 
drainages, previous research has shown that Chinook salmon stocks with the longest distance to travel 
begin their upriver migration earlier than stocks that have shorter distances to travel (Wuttig and 
Evenson 2001; Clark et al. 2015). The same pattern has also been observed in Columbia River Chinook 
salmon stocks (Keefer et al. 2004). If this relationship between migration distance and run timing exists 
for Chinook salmon in the Kuskokwim drainage, the potential may exist for upriver stocks to be 
subjected to a disproportionate amount of exploitation, if the majority of harvest is allocated during the 
early portion of the run. Upriver stocks may also experience higher mortality rate because they are 
vulnerable to a large proportion of the fishing effort that occurs in the drainage. 

Chinook salmon fisheries in the Kuskokwim River are actively managed through the use of fixed 
escapement goal policies, as are numerous salmon stocks across Alaska. Escapement goals set the 
number of spawners that should be allowed to escape harvest and spawn each year to produce future, 
sustainable yield (Clark et al. 2009). Typically, escapement goals are set using well-known production 
models based on stock-recruit theory (e.g., Ricker et al. 1950). However, low quality and incomplete 
enumeration of salmon runs across large, remote drainages has precluded the use of traditional 
spawner-recruit models to set escapement goals for several Chinook salmon stocks in western Alaska, 
including those in the Kuskokwim River. As an alternative to spawner-recruit models, Bue et al. (2012) 
adapted an existing model, used to estimate drainage-wide run abundance and escapement in data-
limited circumstances (Shotwell and Adkison 2004), to Chinook salmon runs in the Kuskokwim River. The 
Bue et al.(2012) model used escapement data from weirs, counting towers, air surveys, along with 
harvest estimates, and, importantly, was anchored by five years of abundance estimates generated from 
a telemetric mark-recapture study (Schaberg et al. 2012), which allowed for the Bue et al. (2012) model 
to be calibrated to empirical abundance estimates.   

Telemetric mark-recapture studies have become an important method for estimating drainage-
wide escapement for Kuskokwim River Chinook salmon.  The analytical approach for these studies has 
been the two-sample Lincoln-Peterson estimator.  One key assumption of these studies is that capture 
probabilities are similar across all stocks, during the entire duration of the study.  Analysis of Kuskokwim 
Chinook mark recapture models has indicated that the Lincoln-Peterson model is appropriate for 
Kuskokwim Chinook, specifically that the equal capture probability assumption has been satisfied.  
Nevertheless, maximum likelihood and Bayesian approaches are increasingly being used to take fuller 
advantage of the spatial and temporal nature of these data (e.g., Reimer et al. 2016). Using temporal 
stratification, these methods can relax the assumption of equal catchability. Additionally, these 
approaches can generate stock-specific estimates of abundance and run-timing that will provide 
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increased knowledge of the diversity of abundance and migratory timing for these discrete stocks.  In 
short, these new approaches have the potential to “squeeze” more out of the data than the traditional 
Lincoln-Peterson estimator. 

Herein, we provide a new analysis of the telemetric mark-recapture data from Kuskokwim River 
Chinook to demonstrate a new analytical approach that has the potential to take advantage of the full 
range of spatial and temporal information contained in these data.   Specifically we sought to quantify 
estimates of abundance and run timing for tributary-specific Chinook salmon stocks in the Kuskokwim 
Drainage while simultaneously estimating total escapement upstream of the tagging site.  To accomplish 
this goal, we used a Bayesian modification of the maximum likelihood methods described in Bromaghin 
et al. (2010). Fortunately, all of the data required for such a model were collected during a previous 
telemetric mark-recapture survey conducted in the Kuskokwim drainage from 2003-2007. Therefore, the 
potential exists for this Bayesian model to provide simultaneous estimates of tributary-specific run 
timing and abundance while removing the requirement for equal capture probability over time. Such 
information would provide managers useful information that they could use for adjusting management 
actions and, potentially, develop new strategies to prevent the over-harvest of discrete stocks and 
maintain a diverse portfolio of Chinook salmon spawning stocks in the Kuskokwim River.   
 
Methods 
BART Model Overview  

We used a state-space Bayesian Abundance and Run Timing Model (hereafter, referred to as 
BART), which was a modification of the maximum likelihood- based model developed by Bromaghin et 
al. (2010). This model simultaneously estimates both run timing parameters and abundance of specific 
tributary groups using previously collected data from a telemetric mark-recapture study. As in the 
Bromaghin et al. (2010) model, temporal differences in capture probability are incorporated directly into 
the BART model and do not result in biased estimates. The model stratifies Chinook salmon abundance 
by space and time, where twelve tributary groups (Kuskokwim Mainstem, Aniak & Middle Tributaries, 
Salmon River, George River, Holitna River, Hoholitna River, Kogrukluk River, Stony River, Swift River, 
Tatlawiksuk River, Upper Kuskokwim Tributaries, and Takotna River) represent the spatial stratification 
and five approximately 1-week intervals (15 June and earlier, 16-22 June, 23-29 June, 30 June – 6 July, 7 
July and later) represent the time strata. Additionally, we aggregated tributaries into four large 
composite groups (Mainstem, Middle Tributaries, Holitna Drainage, and Upper Tributaries) to 
investigate large-scale patterns in total abundance and run timing. A list of tributaries contained within 
each both tributary and composite groups is presented in Table 1.  

To estimate run timing and abundance, the BART model combines the temporal distribution of 
catch rates at a marking location with known final fate information (tributary destination) to estimate 
run timings of tributary groups while simultaneously estimating abundance from weir counts and 
recapture data. Information on relative abundance across tributary groups is provided by the final 
locations of radiotagged Chinook salmon. Information on the relative abundance by temporal strata is 
provided by CPUE data from gillnet collection efforts to radiotag Chinook salmon in the Kuskokwim 
River. Total Chinook salmon counts at tributary weir projects anchor the analysis by providing known 
escapement for a subset of stocks in each year.  The BART model was run separately for each year, using 
telemetric mark-recapture data from 2003-2007. 
 
Radiotagging Background 
 Complete details of telemetric mark-recapture studies conducted in the Kuskokwim River during 
2003-2006 are provided in Stuby et al. (2007). Study details from the 2007 mark-recapture study are 
provided in Schaberg et al. (2012). Here, we provide a brief overview of collection, tagging, and tacking 
methods used during these years. During 2003-2007, Chinook salmon returning the middle and upper 
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tributaries of the Kuskokwim River were captured across the entire run near Kalskag, Alaska (rkm 270) 
using drift gillnets and fish wheels. The exact location of collection differed across years (see Stuby et al. 
2007 for details), but was within 10-12 km on the upstream or downstream side of Kalskag during each 
year. Collection efforts were conducted 6 days a week from the start to the end of the run. Drift gillnets 
(30.48 m in length, 20.32 cm mesh size, and 29 panels deep) fishing effort alternated between the north 
and south banks of the Kuskokwim River every 45 minutes of soak time, to ensure that all spatial 
components of the run had a non-zero probability of capture. During each day of collections gillnets 
were fished for approximately 3 hours of soak time. Fish wheels (N = 3) were fished for 24 hours a day 
during the run. Two fish wheels were operated on the north bank and one fish wheel was operated on 
the south bank of the Kuskokwim River near Kalskag.     

Upon collection, a subset of Chinook salmon (≥ 450 mm) were tagged with esophageal implant 
radio tags (Model Five pulse encoded transmitters made by Advanced Telemetry Systems; Isanti, 
Minnesota) that were distinguishable by a unique frequency and encoded pulse pattern. Tags were 
deployed proportional to run strength, based on catches from a test gillnet fishery operated near Bethel, 
Alaska by the Alaska Commercial Fisheries Division. Additionally, weekly tagging goals were developed 
for small (< 650 mm) and large (≥ 650 mm) Chinook salmon, based on historical length data from upriver 
weirs. Based on these data, approximately 20% of Chinook salmon escapement past weirs was by fish 
that were ≥ 650 mm (Stuby et al. 2007).  

Radiotagged fish were tracked upriver using a network of 13 (2003) to 17 (2007) ground-based 
tracking stations similar to those in Eiler et al. (2005). Tracking stations extended from just downstream 
of the tagging area, near the abandoned village of Uknavik (rkm 264), to the far upstream reaches of the 
drainage near the villages of McGrath and Takotna (rkm 835). Additionally, two aerial surveys were 
conducted in each year to obtain final locations of fish on the spawning grounds. During 2003-2006 
these two flights were conducted during mid-July and mid-August (Stuby et al. 2007), while in 2007 they 
were conducted during late-August and late-September (Schaberg et al. 2012). These flights covered the 
vast majority of the middle and upper Kuskokwim drainage, upstream of rkm 233.  
 
Required Data Sources 
 CPUE Index. Mean daily catch-per unit effort (CPUE) was calculated for each day that gillnetting 
was conducted to collect Chinook salmon for radiotag implantation. CPUE was averaged across days 
within each time strata to generate an index of abundance in each strata. Each day, drift gillnets were 
fished for approximately 3 hours of soak time. Individual drifts lasted for a maximum duration of ~ 15 
minutes, but could be as brief as 1 minute if a Chinook salmon was caught immediately upon 
deployment. Once a fish was caught in the net, the tagging crew would immediately pull the net, to 
minimize stress on the captured fish. We used simulated data to investigate the potential of this 
sampling behavior (i.e., pulling the net as soon as fish was captured) to bias estimate of relative 
abundance. The results indicate that while pulling the gillnet as soon as a fish is captured may bias 
estimated abundance when compared to known or true abundance, this bias scales linearly with true 
abundance. Therefore, CPUE from gillnet tagging efforts should be a suitable index of relative 
abundance across time strata. 
 Final Locations for Radiotagged Fish. Final locations of tagged fish were determined by a 
combination of aerial surveys and ground-based telemetry tracking stations. To identify fish that 
successfully continued upstream after tagging and required a final location assignment, we used the 
same criteria as Schaberg et al. (2012). Specifically, a tagged fish was deemed part of the sample 
population if any of the following conditions were met: 1) it was recorded at any ground-based tracking 
station located upstream of Birch Tree Crossing station (rkm 294) and remained upstream of Birch Tree 
Crossing for more than 7 days, 2) it was located upstream of Birch Tree Crossing during one of the aerial 
tracking surveys, or 3) it was harvested upstream of Birch Tree Crossing. Annual counts for the number 
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of fish tagged as well as the number of fish that entered the sample population and were assigned a 
final location are presented in Table 2.  

For fish that met these criteria, we used either the final locations from aerial tracking or ground-
based tower detections to assign each fish to one of the 12 tributary groups. Using GIS software, final 
GPS coordinates for each fish from aerial surveys was overlaid on drainage boundaries for specific 
tributaries (Table 1). Subsequently, each Chinook with a final location was assigned to one of the 12 
tributary groups based on the drainage boundary it was located within. For fish not located during the 
final aerial surveys, we used telemetry tower data to determine the most upstream recorded location of 
each fish. For some fish, the final location from aerial tracking surveys and/or the most upstream tower 
detection was along the mainstem. For these fish we were unable to determine a final location, and 
grouped these fish into the Kuskokwim Mainstem tributary group. 

Weir Counts. Weir counts provided known escapement for some stocks in each year of the 
study. This allowed for annual abundance estimates for the BART model to be anchored to annual 
escapement for these stocks. Annual Chinook salmon counts were used from the Salmon River (Aniak 
River drainage, rkm 404), George River (rkm 453; Thalhauser et al. 2008), Tatlawiksuk River (rkm 568; 
Stewart et al. 2008), Kogrukluk River (Holitna River drainage, rkm 710; Williams and Shelden 2010), and 
Takotna River (rkm 835; Costello et al. 2008), although all weirs were not operated in each year (Hansen 
and Blain 2014; Table 3). Additionally, because count data from several weir projects used in Schaberg 
et al. (2012) are now considered to be of low quality, due incomplete operation during the Chinook 
salmon run (Hansen and Blain 2014), we ran the BART model using either: 1) updated weir counts, as 
reported in Hansen and Blain (2014), or 2) weir counts previously reported in Schaberg et al. (2012). This 
allowed us to investigate if the choice of weir data affected our estimated population abundance. 
Hansen and Blain (2014) used a Bayesian framework to estimate Chinook passage during inoperable 
periods (i.e., caused by flooding or disassembly for maintenance) and also omitted counts from three 
weir projects (i.e., George River in 2003, Salmon River in 2006, and Kogrukluk River in 2007) that were 
used in Schaberg et al. (2012). Weir counts used in Schaberg et al. (2012) and Hansen Blain (2014) are 
presented in Table 3. 
 
Model Details 
 The Bayesian state-space BART model is comprised of two submodels, which are fully described 
below. The process model describes the true unobserved state of the system, including probability 
structures of key population parameters. The observation model then provides sampling distributions of 
the observed data that link the true states with the observed data from Kuskokwim Chinook salmon 
projects conducted during 2003-2007. The full probability model describes the joint probability 
distribution of the observed data and the population parameters of interest. The complete BART model 
is provided in Appendix 2. 

Additionally, we ran several iterations of the BART model to test the effect of data sources and 
sharing of information across years on estimated run timing and abundance. In the base BART model, 
we used weir counts as presented in Hansen and Blain (2014) and ran the model for each year (i.e., 
2003-2007) separately, without sharing any information across years (Appendix 1A). We also ran the 
base BART model for each year using weir data from Schaberg et al. (2012), to determine the effect of 
differing weir data on estimated abundance. Finally, we also ran an alternative form of the BART model, 
which shared run timing information for specific tributary groups across years (Appendix 1B). We ran 
this version of the shared run timing BART model separately using either our base weir data (Hansen 
and Blain 2014) or the Schaberg et al (2012) weir data.    
 
Process Model 
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 The number of Chinook salmon from tributary group i that pass the tagging site during time 
strata j follows: 

𝑁𝑖𝑖 = 𝑁 𝜋𝑖𝑖 
 
where N  is the total estimated Chinook abundance north of Birch Tree Crossing in a given year, drawn 
from a normal distribution with mean 𝜇𝑁 and standard deviation 𝜎𝑁. The value of 𝜇𝑁 was set to 0 and 
𝜎𝑁 was extremely large (106), so that the normal distribution would be equivalent to a uniform 
distribution over the range of the likelihood (Fleischman et al. 2013). The parameter 𝜋𝑖𝑖 represents the 
proportion of N in tributary group i passing the tagging site during strata j. The parameter 𝜋𝑖𝑖 sums to 
1.0 across all tributary groups and time strata within each year and is calculated from an array of 
expected frequencies of occurrence of each tributary group during each strata (𝛾𝑖𝑖) that follow a 
Dirichlet distribution. The Dirichlet is the conjugate distribution for the multinomial distribution, which is 
used to model the spatial and temporal distributions of radiotagged Chinook salmon in the observation 
model (described below). For tributary groups i = {1-10}, the Dirichlet distribution was constructed by 
using a series of independent Gamma distributions where:  

𝜋𝑖𝑖 =  
𝛾𝑖𝑖

∑ ∑ 𝛾𝑖𝑖11
𝑖=1

5
𝑗=1

 

𝛾𝑖𝑖  ~ gamma(shape = 1, rate = 0.1) 
 
For the most upstream tributary group, Takotna River i = {12}, there were insufficient final location 
observations to allow for 𝛾𝑖𝑖  parameters to be fit to the data. Therefore, we estimated 𝛾𝑖𝑖  
independently for tributary groups i = {1-11} and then shared information from an adjacent tributary 
group, Upper Kuskokwim Tributaries i = {11}, with Takotna River. To accomplish this we fit a 
proportional parameter, 𝜑 to describe the proportion of occurrences of 𝛾11 in each time strata j that 
should have occurred in the Takotna River. This sharing of information allowed for Takotna River to 
share run timing exactly with the Upper Kuskokwim Tributaries, but for it to have an independent 
abundance estimate. As such 𝜋𝑖𝑖 was for i = {11} was constructed as: 

𝜋𝑖𝑖 =  
𝛾𝑖𝑖 𝜑

∑ ∑ 𝛾𝑖𝑖11
𝑖=1

5
𝑗=1

 

 
while 𝜋𝑖𝑖 was for i = {12} was constructed as: 

𝜋𝑖𝑖 =  
𝛾𝑖𝑖 (1 − 𝜑)
∑ ∑ 𝛾𝑖𝑖11

𝑖=1
5
𝑗=1

 

 
Both tributary-specific total abundance (𝑁𝑖) and strata-specific total abundance (𝑁𝑗) are derived from 
𝑁𝑖𝑖  as follows: 

𝑁𝑖 =  � 𝑁𝑖𝑖
𝑖

 

𝑁𝑗 =  � 𝑁𝑖𝑖
𝑗

 

 
Additionally, several other metrics were calculated, for both use in the Observation Model, and for ease 
of comparing run timing among stocks. The parameter 𝜃𝑗𝑗, the proportion of Chinook salmon in strata j 
from each tributary group (i) was calculated as: 

𝜃𝑗𝑗 =
𝑁𝑖𝑖
𝑁𝑗
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so that 𝜃𝑗𝑗 sum to 1.0 for each time strata. Similarly, 𝜌𝑖𝑖, the proportion of Chinook salmon from each 
stock (i) present in strata j was calculated as: 

𝜌𝑖𝑖 =
𝑁𝑖𝑖
𝑁𝑖

 

 
so that 𝜌𝑖𝑖  sums to 1.0 for each stock. 
 
Observation Model 

Observed data used by the BART model included annual weir counts from 5 weir projects 
conducted across the Kuskokwim River drainage north of Birch Tree Crossing (Table 3), gillnet CPUE by 
time strata (Table 4), and final spawning destinations of radiotagged fish for each tagging strata (Table 
5). 

Observed weir counts (𝑁�𝑖), which served as an estimate of total annual abundance for stocks 
with weirs, were assumed to be lognormally distributed with parameters ln(𝑁𝑖) and 𝜎𝑖, from the process 
submodel. The value of 𝜎𝑖 was calculated from CVs (following Evans et al. [1993]), which were assumed 
to be 0.1 for all weirs. This assumption seems reasonable based on the credible intervals on total weir 
count from the Kuskokwim drainage analyzed using Bayesian methods in Hansen and Blain (2014). Also, 
sensitivity analyses revealed that increasing or decreasing CVs on weir counts from 0.01 – 0.2 had little 
effect on total or stock-specific abundance estimates. 

Catch per unit effort (CPUE) from gillnet catches in each time strata during the original tagging 
study served as the index of abundance that scaled total estimated abundance (N ) across j time strata. 
Catch per unit effort in time strata j was modeled as linearly related to abundance: 
 

ln (𝐶𝐶𝐶𝐶𝑗) ~ norm(ln�𝑁𝑁𝑗� ,𝜎𝐶𝑃𝑈𝑈) 
  

𝑁𝑁𝑗 =  𝑁𝑗  𝑞 
 
with q serving as the constant of proportionality between total estimated abundance and gillnet CPUE in 
each time strata.  
 The number of Chinook salmon with final locations in each i th tributary group within each j th 
time strata (𝑥𝑗𝑗) was modeled as multinomially distributed, with order parameter 𝑛𝑗 (sum of final 
locations across all stocks in each time strata) and proportion parameter 𝜃𝑗𝑗 from the process submodel. 
 
Prior Distributions and Alternative Model Forms 

A key requirement for Bayesian analyses is that prior probability distributions be specified for all 
unknown parameters in the mode (Table 6). Most of our prior distributions in this model were designed 
to be uninformative and have minimal effect on the posterior. However, a few exceptions were made. 
Specifically, the prior distribution for N excluded negative values, as it would be biologically impossible 
to have a negative value for population abundance. Also, an inverse gamma (100,1) was given to 𝜎𝐶𝐶𝑈𝐸, 
which is equivalent to a CV = 0.1. To test the effect of our assumption, we conducted sensitivity analyses 
with differing inverse gamma distributions, with CV equivalents ranging from 0.05 – 0.2 (Table 6). Also, 
while a relatively uninformative prior was assigned to the gamma distribution (shape=1, rate=0.1) used 
to construct the Dirichlet distribution, we conducted sensitivity analysis to quantify the effect of a less 
informative prior gamma distribution (shape=0.1, rate=0.01) on posterior distributions. 

Finally, we explored the use of a hierarchical modification of the BART model to share run timing 
information across years. To accomplish we used the hyperparameter 𝛼𝑖𝑖  to share the expected 
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frequencies of occurrence of each tributary group during each strata across years (see Appendix 1B for 
JAGS code). To accomplish this, which we assigned a hyperprior: 
  

𝛼𝑖𝑖  ~ gamma(shape = 0.001, rate = 0.001) 
 
which was subsequently used as the shape parameter in our independent gamma distribution (𝛾𝑖𝑖) to 
construct the Dirichlet distribution, as follows: 
 

𝛾𝑖𝑖  ~ gamma(shape = 𝛼𝑖𝑖 , rate = 0.1) 
 
As in construction of the Dirichlet distribution in the base, single year BART models, 𝛼𝑖𝑖  was only 
estimated for i = {1:11}, due to insufficient data from Takotna i ={12}, to independently estimate 𝛼. As in 
the base, single year BART models, a proportional parameter 𝜑 was fit in each year to model the 
proportion of occurrences of 𝛾11 in each time strata j that should have occurred in Takotna.  
 
Model Fitting 
 All model versions (e.g., single year base models, multi-year models with shared run-timing 
parameters) were fit using Bayesian integration with MCMC methods to sample from the joint posterior 
probability distribution. MCMC sampling was conducted using the JAGS software (“Just Another Gibbs 
Sampler”, Plummer 2013) implemented through R (R Core Development Team 2014) using the R 
package “R2jags” (Su and Yajima 2015). MCMC sampling was conducted with two chains with differing 
initial values to verify convergence and confirm that multiple solutions were not found. Convergence of 
the chains was verified by visual inspection of trace plots of the posterior distributions and by 
confirming that the 95% credible interval for the Gelman-Rubin statistic for each estimated parameter 
was ≤ 1.1 (Gelman et al. 2004). MCMC sampling of all base, single year BART models involved a burn-in 
period of 50,000 iterations, 500,000 post burn-in iterations, and a thinning interval of 100 iterations. 
This resulted in a total of 5,000 posterior samples retained for analysis. MCMC sampling for the shared 
run-timing model also involved a burn-in period of 50,000 iterations, but used 1,000,000 post burn-in 
iterations with a thinning interval of 200 iterations, resulting in 5,000 posterior samples being kept. 
Means, standard deviations, and 95% credible intervals (2.5 and 97.5 percentiles of the posterior 
distributions) were calculated for quantities of interest from their marginal posterior distributions. 
 

RESULTS 
Total Abundance 
 Estimated Chinook salmon abundance for the Kuskokwim River drainage north of Birch Tree 
Crossing (rkm 294) from the base BART model ranged from a high of  195,472 (95% CI: 148,433 – 
254,391) in 2006 to a low of 108,290 (78,238 – 146,542) in 2003 (Figure 1). Annual trends in total 
abundance were similar to those found in Schaberg et al. (2012) using the Lincoln-Petersen estimator. 
While annual trends were similar, the BART model tended to predict lower total abundance than 
Schaberg et al. (2012) in most years (2003-2006; range: 15 – 23% lower), with the difference between 
BART and Schaberg et al. (2012) model estimates increasing as population abundance increased (Figure 
1). The one year in which abundance estimates from the base BART model and Schaberg et al. (2012) 
were similar (~1% difference) was 2007 (Figure 1). Running the base BART model using weir counts from 
Schaberg et al. (2012) did not resolve the differences in total abundance between the base BART model 
and Schaberg et al. (2012) (Figure 1). Running the BART model with shared run timing information 
across years resulted in slightly elevated abundance estimates (range: 1% - 13% increases) compared to 
the base BART model in most years (2003-2006). However, estimated abundance from BART models 
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with shared run timing (using weir data from either Hansen and Blain 2014 or Schaberg et al. 2012) was 
still lower than estimates from Schaberg et al. (2012)(Figure 1). The exception to this trend was 2007, 
for which estimated abundance from the BART model with shared run timing using Hansen and Blain 
(2014) weir counts was much higher than estimates from both the base BART model (32% increase) and 
those from Schaberg et al. (2012) abundance estimate (33% increase; Figure 1). 
 While total abundance fluctuated during 2003-2007, there were similar temporal trends within 
each year. Across all years, total abundance was generally low during the 1st time strata (15 June & 
earlier), much higher during the 2nd to 4th time strata (16 June – 6 July) and low again during the 5th time 
strata (7 July & later; Table 7 and Figure 2). During 2003, 2004, and 2007, total abundance peaked 
during the 2nd and 3rd time strata (16-29 June) and during 2005 and 2006 total abundance peaked during 
the 3rd and 4th time strata (23 June – 6 July; Table 7 and Figure 2). 
 
Run Timing by Tributary Group and Year 
 The base BART model also estimated parameters for the proportion of each tributary group 
passing the Kalskag tagging site during each time strata. Parameter estimates and standard deviations 
for the proportion of each tributary group passing Kalskag during each time strata are presented in 
Tables 8a-8b. When these run timing proportions were averaged across years (2003-2007) for each 
tributary group, three main patterns emerged. The first run timing pattern was represented by four 
tributaries (Upper Kuskokwim Tributaries, Takotna River, Tatlawiksuk River, and the Kuskokwim 
Mainstem). These tributaries had the highest proportions in the first strata (15 June & earlier), reached a 
plateau during the second and third time strata (16-29 June) and declined during the last two time strata 
(30 June & later; Figure 3). The second run timing pattern was represented by two tributaries (Swift 
River and Salmon River), that had a distinct peak in the proportion of the run passing Kalskag during the 
second time strata (16-22 June) and declined during the remaining time strata (Figure 3). Finally, the 
third run timing pattern was represented by six tributary groups (Aniak River, George River, Holitna 
River, Hoholitna River, Kogrukluk River, Stony River). For these tributaries, the run proportions passing 
Kalskag resembled a normal curve, with gradually increasing proportions in early time strata, a peak 
during the middle time strata (23-29 June) and gradually decreasing proportions during the later time 
strata (Figure 3). Generally, tributaries exhibiting the first and second run timing patterns were 
upstream tributaries and those exhibiting the third pattern were middle tributaries. 
 There also appeared to be annual differences in run timing that affected all tributary groups in a 
given year. For example, runs of all tributary groups in 2006 and 2007 were delayed compared to runs in 
2003-2005 (Tables 8a-8b). In 2007, all tributary groups had lower proportions passing Kalskag (0.01 
[mean], ± 0.006 [SD]) during the first time strata (15 June & earlier) than in 2003-2005 (0.13 ± 0.07; 
Table 8a-8b). However, despite the late start to the run in 2007, the average proportion of tributary 
groups passing Kalskag during the 5th time strata (0.07 ± 0.03) were similar to those in 2003-2005 (0.07 ± 
0.03; Table 8a-8b), indicating that most tributary groups in 2007 appeared to experience a short, 
compressed run. In 2006, the proportions of most tributary groups passing Kalskag (0.02 ± 0.015) was 
also low during the 1st time strata, with the exception that the proportion of Upper Kuskokwim Tributary 
Chinook that passed Kalskag during the first time strata (0.18) was much greater than for all other 
tributary groups (Table 8a-8b).  However, unlike 2007, many tributary groups in 2006 had their highest 
proportions passing Kalskag during the 4th time strata (30 June – 6 July), and proportions of each 
tributary group in the 5th strata (7 July & later) were elevated compared to the 5th time strata in other 
years. This seemed to indicate that the overall run during 2006 was not compressed, but that many 
tributary groups experience a phase shift in run timing, with their proportions increasing during the 
latter time strata compared to other years (Table 8a-8b). 
  
Composition of the Run by Tributary Group and Year 
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 During 2003-2007, Chinook salmon from Holitna Drainage were the most numerous out of the 
four large composite tributary groups. Across these years in almost all strata, Chinook salmon from the 
Holitna Drainage made up a plurality of the run (Figure 4). Holitna Drainage Chinook salmon were the 
most numerous during 21 of the 25 time strata across all years, ranging from 0.19 – 0.5 (mean = 0.38; 
Figure 4). The few strata in which Holitna Drainage Chinook salmon were not the most abundant 
composite tributary group, were usually the first or last strata, when overall abundance was low (Figure 
4). While the Holitna Drainage Chinook appear to be the most abundant composite tributary group, 
other composite tributary groups also support substantial proportions of the run (Figure 4). The Middle 
Tributary composite group ranged from 0.11 – 0.39 and averaged 0.25 across all years (Figure 4). The 
Upper Tributary composite group ranged from 0.9 – 0.53 and averaged 0.22 (Figure 4) and Chinook with 
final locations in the Kuskokwim Mainstem averaged 0.15, ranging from 0.06 – 0.31 (Figure 4). In general 
the Chinook salmon run in the Kuskokwim at Birch Tree appears to be fairly diverse throughout the run, 
with all four composite groups contributing substantial proportions of the run across multiple years. 
While interannual differences exist, there appears to be consistent evidence that Chinook salmon from 
the Upper Tributaries compose a large portion of the run in 1st strata, but their contribution to the 
overall run decline as the run continues. Notably, across all years, abundance was typically low in the 1st 
strata (Figure 2), especially in 2006, when Upper Tributary Chinook composed the highest proportion in 
any time strata of the study (Figure 4). 
 Examination of tributary-specific proportions composing the run (Table 9), a large degree of 
temporal variability was evident both within and across years. However, despite this variability, some 
general trends exist. Across all years, five of the twelve tributary groups (Mainstem [mean proportion = 
0.15], Aniak & Middle Tributaries [0.19], Holitna River [0.09], Hoholitna River [0.18], and Kogrukluk River 
[0.11]) were consistently the largest contributing groups to the run across all time strata (Table 9). On 
average these groups composed 0.72 of the total run. Tributary-specific temporal patterns also existed. 
Two upstream tributary groups, Upper Kuskokwim Tributaries and Swift River, contributed large 
proportions to the run during the first two time strata (22 June & earlier), but their contributions 
declined during the final three time strata (23 June & later; Table 9). Conversely, several middle tributary 
groups including Aniak & Middle Tributaries, Holitna River, and Kogrukluk River generally had increasing 
contributions to the run moving from the first to last time strata (Table 9). Finally, of the larger tributary 
groups, Chinook salmon from the Hoholitna River contributed the most consistent proportions to the 
run, contributing relatively high proportions to the run across all five time strata (Table 9).   
 
Sensitivity Analysis 
 We evaluated how changes in our prior distributions for the variance on the index of abundance 
(𝜎𝐶𝐶𝐶𝐶) affected estimates of abundance within each time strata (Figure 5) and for each year. Estimates 
showed that increasing 𝜎𝐶𝐶𝐶𝐶 from 0.1 up to 0.2 or decreasing 𝜎𝐶𝐶𝐶𝐶  down to 0.05 had virtually no 
effect on the estimated abundance within each time strata across years (Figure 5). Similarly, such 
changes in 𝜎𝐶𝐶𝐶𝐶 also had virtually no effect on overall abundance estimated for each year. 
   Finally, we altered the assumed variance on γ[i,j] (used to create the Dirichlet distribution of 
expected frequencies of Chinook salmon observed in each tributary group during each time strata) to 
investigate how a 10-fold increase in the variance of the prior distribution (Table 6) would affect annual 
estimates of total abundance. Increasing the variance of the prior distribution resulted in increased 
estimates in total abundance in most years (Figure 6), with increases of 14%, 8%, 15% and 36% 
compared to the base BART model during 2004-2007, respectively. Despite these increases, estimated 
total abundance in 2004-2006 was still below that estimates from Schaberg et al. (2012). In 2007, 
increasing the variance of the prior distribution resulted in an estimated total abundance that exceeded 
Schaberg et al. (2012) by 38%. In 2003, estimated population abundance was similar using either prior 
distribution for γ[i,j].  
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DISCUSSION 

Overall, across the five years of this study, Chinook salmon from upstream tributary groups 
tended to complete their migrations earlier than those from middle and Holitna tributary groups in the 
Kuskokwim River Basin. This finding supports those from other Alaskan river systems that Chinook 
salmon with the furthest distance to travel initiate their upriver migrations earlier than those with 
shorter distances to travel (Wuttig and Evenson 2001; Clark et al. 2015). While this trend was clearly 
evident from the run timing proportions from each tributary group (Tables 8a-8b; Figure 3), the 
proportional composition of the run (calculated using the estimated abundance of each tributary group 
in each time strata; Figure 4) indicated that even when these upper tributary groups had higher run 
timing proportions than middle or Holitna tributary groups (22 June and earlier; Table 8a-8b; Figure 3) 
they were less abundant at the tagging site than Chinook salmon from middle of Holitna tributary 
groups (Table 10a-10b; Figure 4). Potentially, the presence of Chinook salmon from the productive 
middle and Holitna drainages during the early run could serve to alleviate harvest pressure on upper 
tributary stocks during this time. Analysis of run timing of tributary groups on a finer scale (e.g., daily) 
than conducted in the BART model (~ weekly) may better indicate the extent to which upper tributary 
groups co-occur with spawners from middle and Holitna tributary groups during the early run. 

Our results also indicate that there were annual differences in run timing that affect all tributary 
groups in a given year. For example, runs of virtually all tributary groups in 2006 and 2007 were delayed 
compared to runs in 2003-2005. This could indicate that large-scale regional environmental variables 
(i.e., temperature, ice out data) may affect run timing of all Chinook salmon tributary groups, as has 
been documented in other systems (Keefer et al. 2008; Mundy and Evenson 2011). Future research 
investigating the relationship between environmental variables and Chinook salmon run timing in the 
Kuskokwim drainage could benefit managers by providing estimates of the proportion of the run that 
has already passed a given location on a given date (Adkison and Cunningham 2015). 

It is important to note that this study quantifies only trends in Chinook salmon escapement 
upstream from the tagging site at Birch Tree Crossing. During 2003-2007, an average of 88% of 
subsistence Chinook harvest occurred downstream of the tagging site (Brown et al. 2005; Fall et al. 
2007a,b; Fall et al. 2009a, b). Therefore, our results may not be representative of the actual stock 
structure before harvest. Based on our results, it seems possible that upper tributary groups may 
experience higher exploitation during the early portion of the run than middle or Holitna tributary 
groups, which have a larger proportion of their tributary groups running later in the season. Previously, 
Linderman and Bergstrom (2009) reported that an average of 76% of the subsistence harvest for 
Chinook salmon occurs during the first half of the run. Comparing results of our study with similar mark-
recapture telemetric studies conducted during recent years when early-season subsistence harvest 
restrictions were in place (e.g., 2014, 2015) may help determine if downstream harvest 
disproportionately targets Chinook salmon from upstream tributary groups. 

Estimated total abundance from the base BART model had similar annual trends to those 
estimated using traditional Lincoln-Petersen mark-recapture methods in Schaberg et al. (2012). The 
BART model estimates, however, were lower in most years (2003-2006) than those from Schaberg et al. 
(2012) (Figure 1). As we used the same final location information from Schaberg et al. (2102) (see Table 
2 in Schaberg et al. 2012), differences in estimated abundance are likely due to model structure 
(Bayesian methods versus traditional Lincoln-Petersen analysis). Furthermore, rerunning the BART 
model using the exact weir count data from Schaberg et al. (2012) (Table 3) produced very similar 
estimates to our base BART model, which used updated weir counts from Hansen and Blain (2014; Table 
3). As the BART model directly incorporates temporal differences in capture probability by using 
temporal stratification, it seems likely that this temporal stratification may be responsible for such 
consistent differences in abundance estimates across years.  
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The one year in which abundance estimates were similar between the base BART model and 
Schaberg et al. (2012) was 2007 (Figure 1). In this year, the count data from the Kogrukluk River weir 
was used in Schaberg et al. (2012) but was not used in the base BART model (Table 3). Of the 5 weir 
projects used in our analysis, the Kogrukluk weir counts had, by far, the most Chinook salmon on an 
annual basis (Table 3). Omitting the Kogrukluk weir counts in the base BART model for 2007 reduced the 
overall ratio of marked to unmarked fish, which increased the q parameter (constant of proportionality 
between total estimated abundance and gillnet CPUE in each time strata), relative to when the 
Kogrukluk weir data was included. This led to an increase in our estimated abundance in the 2007 base 
BART model.   

When we shared information on the proportions of each tributary group present in each time 
strata across years, estimated abundance tended to increase (Figure 1). However, these increases were 
relatively modest in most years (2003-2006; Figure 1), and still below abundance estimates from 
Schaberg et al. (2012). The exception was 2007, when shared run timing increased the abundance 
estimate by 33% over the based BART model. In 2007, there were rather large differences in the run 
timing evident across all tributary groups. Compared to other years, 2007 was a late, compressed run in 
which all tributary groups were late arriving and then abundance quickly declined after a peak during 
the 2nd and 3rd time strata (Tables 8a-8b; Figure 4). Sharing proportions of each tributary groups present 
in each time strata across years caused proportions for 2007 to increase during the first and later time 
strata, which did not match gillnet catch or CPUE data. The combination of lacking Kogrukluk weir data 
and changes in the proportions of each tributary group present in each time strata appeared to 
dramatically alter the estimated abundance for 2007 using the base BART with shared run timing 
information (Figure 1). 

In conclusion, our results offer a fine-scale view of run timing and abundance for Kuskokwim 
River Chinook salmon tributary groups. While our results only represent trends in escapement after the 
majority of harvest has occurred, valuable insights can still be drawn from our results. For example, it 
appears that specific tributary groups have consistent trends in run timing across years. Upriver 
tributary groups were present in larger proportions during the early part of the run and decline later in 
the run. These upriver tributary groups may be more vulnerable to exploitation than other tributary 
groups (middle and Holitna tributary groups) that are present in larger proportions later in the run. Total 
abundance estimates from the BART model, while similar to trends estimated previously using 
traditional mark-recapture methods (Schaberg et al. 2012), are more robust to temporal differences in 
capture probabilities. Additionally, the BART model estimates abundance on a finer spatial scale than 
previous studies by using Bayesian methods to distribute overall abundance across tributary groups 
using the spatial distribution of final locations from radio-telemetry surveys. This fine-scale information 
on run timing and abundance should be useful to ongoing management efforts aimed at preserving the 
diversity of Chinook salmon spawning stocks within the Kuskokwim River Drainage. 
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Table 1. Tributaries with the Kuskokwim River Basin that contained at least one final location 
for a radiotagged Chinook salmon during 2003-2007. The Composite Group and Tributary 
Group for each tributary. See Figure 1 for the location of each tributary. Tributary Groupings 
were used as the spatial component in the BART model. 

Tributary Composite Group Tributary Group 
Kuskokwim Mainstem Mainstem Kuskokwim Mainstem (MST) 
Aniak River Middle Tributaries Aniak & Middle Tributaries (AMT) 
Owhat River Middle Tributaries Aniak & Middle Tributaries (AMT) 
Holokuk River Middle Tributaries Aniak & Middle Tributaries (AMT) 
Sue Creek Middle Tributaries Aniak & Middle Tributaries (AMT) 
Venah River Middle Tributaries Aniak & Middle Tributaries (AMT) 
Oskawalik River Middle Tributaries Aniak & Middle Tributaries (AMT) 
Salmon River (weir) Middle Tributaries Salmon River (SAL) 
George River (weir) Middle Tributaries Geroge River (GEO) 
Vreeland River Holitna Drainage Holitna River (HLT) 
Holitna River Holitna Drainage Holitna River (HLT) 
Kogrukluk River (weir) Holitna Drainage Kogruluk River (KGK) 
Hoholitna River Holitna Drainage Hoholitna River (HOH) 
Stony River Upper Tributaries Stony River (STN) 
Swift River Upper Tributaries Swift River (SWF) 
Tatlawiksuk River(weir) Upper Tributaries Tatlawiksuk River (TLS) 
Takotna River (weir) Upper Tributaries Takotna River (TAK) 
Selatna River Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
Black River Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
Mainstem Headwaters  Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
Blackwater River Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
Middle Fork Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
Big River Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
Pitka Fork Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
South Fork Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
East Fork Upper Tributaries Upper Kuskokwim Tributaries (UKT) 
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Table 2. Tributaries within the Kuskokwim River Basin that contained at least one final 
location for a radiotagged Chinook salmon during 2003-2007. Tributary Group was used as 
the spatial component in the BART model. See Figure 1 for the location of each drainage in 
the Kuskokwim River Basin. 

Tributary/Watershed 
Tributary 

Group 2003 2004 2005 2006 2007 
Total Tagged  

 
488 381 449 506 340 

Downstream of Tagging Site 
 

28 63 39 43 16 
Kuskokwim Mainstem MST 80 66 85 54 27 
Aniak River AMT 74 80 49 102 50 
Owhat River AMT - - - - 1 
Holokuk River AMT 5 10 7 4 12 
Sue Creek AMT - 1 - - - 
Venah River AMT 1 - - - - 
Oskawalik River AMT 7 2 8 7 8 
Salmon River (weir) SAL 7 5 4 9 8 
George River (weir) GEO 10 9 6 9 10 
Vreeland River HLT 1 - 2 2 - 
Holitna River HLT 86 49 75 98 75 
Kogrukluk River (weir) KGK 49 24 49 35 42 
Hoholitna River HOH 45 35 44 36 22 
Stony River STN 7 7 23 39 19 
Swift River SWF 32 17 24 32 25 
Tatlawiksuk River (weir) TLS 15 5 12 7 5 
Takotna River (weir) TAK 2 1 1 0 0 
Selatna River UKT - - - 1 1 
Black River UKT - - 1 - - 
Mainstem Headwaters  UKT 16 3 5 11 4 
Takotna River (not past weir) UKT 4 - 2 1 7 
Blackwater River UKT 2 - 2 3 2 
Middle Fork UKT 1 - 4 4 - 
Big River UKT - 1 1 3 - 
Pitka Fork UKT 14 3 5 5 5 
South Fork UKT 1 - - - 1 
East Fork UKT 1 - 1 1 - 

       Total Final Locations   460 318 410 463 324 
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Table 3. Total escapement at each of 5 weir projects in the Kuskokwim River Basin during 2003-2007. Total escapement 
from weir projects is presented as reported in Schaberg et al. (2012) and Hansen and Blain (2014). Total escapement from 
Hansen and Blain (2014) was used in the base BART model. 

Year Salmon River (Aniak) George River Kogrukluk River Tatlawiksuk River Takotna River 

       Schaberg et al. (2012) 
    

       
 

2003 - 4,693 11,771 - 378 

 
2004 - 5,207 19,651 2,833 461 

 
2005 - 3,845 22,000 2,920 499 

 
2006 6,732 4,357 19,414 1,700 539 

 
2007 6,220 4,883 13,029 2,061 418 

       Hansen and Blain (2014) 
    

       
 

2003 - - 12,008 - 390 

 
2004 - 5,488 21,819 2,833 461 

 
2005 - 3,845 21,819 2,864 499 

 
2006 - 4,355 20,205 1,700 541 

  2007 6,220 4,011 - 2,032 412 
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Table 4. Gillnet catch-per-unit-effort (CPUE) from collections of Chinook salmon for radiotagging in the 
Kuskokwim River, Alaska during 2003-2007. CPUE data is presented as the number of Chinook salmon 
captured per 15 minutes of soak time and is partitioned into five weekly time strata used in the BART model. 

Year 15 June and earlier 16-22 June 23-29 June 30 June - 6 July 7 July and later 

2003 0.40 1.08 1.04 0.80 0.20 

2004 0.26 0.98 1.25 0.43 0.24 

2005 0.29 0.68 0.88 0.97 0.19 

2006 0.07 0.63 0.95 0.94 0.42 

2007 0.01 0.84 0.87 0.46 0.13 
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Table 5. The number of final locations of radiotagged Chinook salmon by tributary group and time strata in the Kuskokwim 
River Basin during 2003-2007. Spatially and temporally stratified counts of final locations were used in the BART model. 
  Tributary Group 
Year Time Strata MST AMT SAL GEO HOH HLT KGK STN SWF TLS UKT TAK 
2003 15 June & earlier 23 6 1 1 6 13 6 1 4 3 14 0 

 
16 - 22 June 22 22 1 1 16 24 11 1 9 5 8 0 

 
23 - 29 June 13 30 3 4 7 21 10 2 11 2 11 1 

 
30  June - 6 July 12 18 1 3 12 15 18 3 3 2 1 1 

 
7 July  & later 10 11 1 1 4 14 4 0 5 3 5 0 

              2004 15 June & earlier 13 9 0 1 4 1 1 0 3 3 2 1 

 
16 - 22 June 16 18 3 2 11 12 3 1 8 0 3 0 

 
23 - 29 June 14 23 0 4 12 18 9 4 3 2 2 0 

 
30  June - 6 July 4 15 1 0 3 4 9 1 0 0 0 0 

 
7 July  & later 19 28 1 2 5 14 2 1 3 0 0 0 

              2005 15 June & earlier 22 15 2 1 14 12 14 3 8 2 10 1 

 
16 - 22 June 17 12 1 2 9 17 8 7 15 6 5 0 

 
23 - 29 June 8 13 0 1 4 15 11 3 0 2 2 0 

 
30  June - 6 July 12 12 0 1 11 17 9 6 1 1 2 0 

 
7 July  & later 26 12 1 1 6 16 7 4 0 1 2 0 

              2006 15 June & earlier 4 1 0 0 2 2 0 2 0 0 12 0 

 
16 - 22 June 12 9 5 0 5 13 6 4 7 2 7 0 

 
23 - 29 June 19 57 3 3 14 29 15 13 12 2 7 0 

 
30  June - 6 July 7 25 1 3 9 28 9 11 10 1 2 0 

 
7 July  & later 12 21 0 3 6 28 5 9 3 2 1 0 

              2007 15 June & earlier 0 0 0 0 0 1 0 0 0 0 0 0 

 
16 - 22 June 4 8 1 0 3 7 5 1 5 1 2 0 

 
23 - 29 June 11 31 3 3 7 29 20 8 10 2 10 0 

 
30  June - 6 July 5 20 3 4 6 16 10 5 4 0 6 0 

  7 July  & later 7 12 1 3 6 22 7 5 6 2 2 0 
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Table 6. Prior distributions for model parameters and alternate priors tested for sensitivity. In the BART 
mode i = 12 tributary groups and j = 5 time strata. 
Text JAGS Prior Alternate Prior(s) 
N N N ~ "Uniform" (∞, ∞)† 

 q q q ~ Beta (1, 1) 
 γ D γ[i,j] ~ Gamma (1,0.1) γ[i,j] ~ dgamma (0.1,0.01) 

ρ prop ρ ~ Beta (1, 1) 
 α alpha α[i,j] ~ Gamma (0.001, 0.001) 
 σCPUE sigma.index σCPUE ~ 1/√ Gamma (100, 1) σCPUE ~ 1/√ Gamma (25, 1) 

   
σCPUE ~1/√ Gamma (50, 1) 

   
σCPUE ~1/√ Gamma (200, 1) 

      σCPUE ~1/√ Gamma (400, 1) 
† Where "Uniform" is in quotes, a normal distribution with mean 0 and extremely large variance was used. 
These uninformative normal distributions were designed to be equivalent to uniform distributions over 
the range of the likelihood. Normal distributions were less likely to cause computational disruptions 
during MCMC sampling. 
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Table 7. Total Abundance by time strata for each year (2003-2007) estimated from the base BART model. Values are 
presented as mean (SD). 

Time Strata 2003 2004 2005 2006 2007 
15 June & earlier 13,163 (2,495) 15,736 (5,846) 15,209 (5,754) 5,224 (4,354) 691 (1,342) 
16 - 22 June 32,140 (2,833) 53,461 (9,225) 32,562 (10,533) 42,063 (4,426) 46,868 (2,715) 
23 - 29 June 31,263 (2,518) 66,145 (5,162) 41,815 (6,305) 60,197 (7,024) 48,318 (1,761) 
30 June - 6 July 24,791 (924) 25,923 (6,935) 45,246 (9,526) 59,333 (9,314) 28,159 (4,797) 
7 July  & later 6,933 (160) 14,919 (10,036) 10,156 (10,310) 28,655 (6,104) 8,463 (1,919) 

      Total 108,290 
(17,599) 176,184 (25,967) 144,988 (19,300) 195,472 (27,002) 132,499 (132,498) 
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Table 8a. Run timing proportions (ρij) for Kuskokwim River Chinook salmon at Birch Tree Crossing (rkm 294) for tributary groups 
in the mainstem, middle and Holitna composite groups during 2003-2007. Values are presented as means (SD). 
  Tributary Group 

Year Time Strata 
Mainstem 

(MST) 
Aniak 
(AMT) 

Salmon 
(SAL) 

George 
(GEO) 

Hoholitna 
(HOH) 

Holitna 
(HLT) 

Kogrukluk 
(KGK) 

2003 15 June & earlier 0.21 (0.03) 0.05 (0.01) 0.12 (0.08) 0.09 (0.06) 0.09 (0.03) 0.10 (0.02) 0.08 (0.03) 

 
16 - 22 June 0.33 (0.05) 0.27 (0.04) 0.19 (0.11) 0.14 (0.09) 0.38 (0.07) 0.31 (0.05) 0.24 (0.06) 

 
23 - 29 June 0.20 (0.04) 0.37 (0.05) 0.39 (0.14) 0.38 (0.12) 0.18 (0.05) 0.28 (0.05) 0.22 (0.05) 

 
30 June - 6 July 0.18 (0.04) 0.23 (0.04) 0.19 (0.11) 0.30 (0.12) 0.29 (0.06) 0.20 (0.04) 0.39 (0.06) 

 
7 July  & later 0.06 (0.01) 0.05 (0.01) 0.08 (0.05) 0.06 (0.04) 0.04 (0.02) 0.07 (0.01) 0.04 (0.01) 

         2004 15 June & earlier 0.15 (0.03) 0.07 (0.02) 0.07 (0.06) 0.10 (0.07) 0.08 (0.03) 0.02 (0.01) 0.03 (0.02) 

 
16 - 22 June 0.33 (0.06) 0.26 (0.04) 0.49 (0.15) 0.26 (0.12) 0.35 (0.07) 0.30 (0.06) 0.16 (0.07) 

 
23 - 29 June 0.31 (0.06) 0.35 (0.05) 0.13 (0.11) 0.46 (0.13) 0.40 (0.08) 0.46 (0.07) 0.43 (0.09) 

 
30 June - 6 July 0.08 (0.03) 0.19 (0.03) 0.22 (0.13) 0.07 (0.07) 0.10 (0.04) 0.10 (0.04) 0.33 (0.08) 

 
7 July  & later 0.11 (0.02) 0.11 (0.02) 0.07 (0.05) 0.08 (0.05) 0.05 (0.02) 0.10 (0.02) 0.02 (0.01) 

         2005 15 June & earlier 0.12 (0.02) 0.09 (0.02) 0.18 (0.10) 0.07 (0.04) 0.13 (0.03) 0.06 (0.01) 0.10 (0.02) 

 
16 - 22 June 0.22 (0.04) 0.17 (0.04) 0.26 (0.15) 0.25 (0.12) 0.19 (0.05) 0.19 (0.04) 0.14 (0.04) 

 
23 - 29 June 0.22 (0.05) 0.36 (0.06) 0.23 (0.16) 0.31 (0.16) 0.19 (0.07) 0.33 (0.06) 0.40 (0.07) 

 
30 June - 6 July 0.29 (0.06) 0.30 (0.06) 0.21 (0.16) 0.29 (0.15) 0.42 (0.08) 0.34 (0.06) 0.30 (0.07) 

 
7 July  & later 0.13 (0.02) 0.06 (0.01) 0.10 (0.08) 0.06 (0.04) 0.05 (0.02) 0.07 (0.01) 0.04 (0.01) 

         2006 15 June & earlier 0.03 (0.01) 0.00 (0.00) 0.02 (0.02) 0.03 (0.03) 0.03 (0.01) 0.01 (0.00) 0.00 (0.00) 

 
16 - 22 June 0.30 (0.06) 0.11 (0.03) 0.52 (0.13) 0.09 (0.08) 0.19 (0.06) 0.17 (0.04) 0.24 (0.07) 

 
23 - 29 June 0.29 (0.05) 0.43 (0.04) 0.22 (0.10) 0.26 (0.11) 0.31 (0.07) 0.24 (0.04) 0.31 (0.07) 

 
30 June - 6 July 0.18 (0.05) 0.29 (0.04) 0.17 (0.10) 0.37 (0.13) 0.32 (0.07) 0.36 (0.05) 0.33 (0.08) 

 
7 July  & later 0.17 (0.04) 0.14 (0.02) 0.05 (0.04) 0.23 (0.10) 0.13 (0.04) 0.20 (0.03) 0.10 (0.04) 

         2007 15 June & earlier 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

 
16 - 22 June 0.41 (0.11) 0.31 (0.07) 0.45 (0.16) 0.19 (0.14) 0.39 (0.12) 0.30 (0.07) 0.33 (0.09) 

 
23 - 29 June 0.34 (0.09) 0.39 (0.06) 0.25 (0.12) 0.31 (0.12) 0.28 (0.09) 0.39 (0.06) 0.41 (0.07) 

 
30 June - 6 July 0.16 (0.06) 0.23 (0.04) 0.23 (0.11) 0.37 (0.13) 0.23 (0.08) 0.20 (0.04) 0.20 (0.05) 

  7 July  & later 0.07 (0.02) 0.04 (0.01) 0.03 (0.02) 0.10 (0.05) 0.07 (0.03) 0.09 (0.02) 0.04 (0.01) 
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Table 8b. Run timing proportions (ρij) for Kuskokwim River Chinook salmon at Birch Tree Crossing (rkm 294) for tributary 
groups in the upper tributaries composite group during 2003-2007. Values are presented as means (SD). 
  Tributary Group 

Year Time Strata Stony (STN) Swift (SWF) 
Tatlawiksuk 

(TLS) 
Upper Kusko. 
Tribs. (UKT) Takotna (TAK) 

2003 15 June & earlier 0.11 (0.07) 0.09 (0.04) 0.15 (0.07) 0.25 (0.05) 0.25 (0.05) 

 
16 - 22 June 0.18 (0.11) 0.31 (0.07) 0.36 (0.11) 0.24 (0.06) 0.24 (0.06) 

 
23 - 29 June 0.28 (0.13) 0.38 (0.08) 0.18 (0.09) 0.35 (0.07) 0.35 (0.07) 

 
30 June - 6 July 0.37 (0.13) 0.12 (0.05) 0.18 (0.09) 0.08 (0.04) 0.08 (0.04) 

 
7 July  & later 0.04 (0.04) 0.07 (0.03) 0.10 (0.05) 0.06 (0.02) 0.06 (0.02) 

       2004 15 June & earlier 0.05 (0.05) 0.12 (0.05) 0.33 (0.13) 0.22 (0.10) 0.22 (0.10) 

 
16 - 22 June 0.19 (0.11) 0.51 (0.10) 0.12 (0.10) 0.37 (0.13) 0.37 (0.13) 

 
23 - 29 June 0.51 (0.14) 0.24 (0.10) 0.37 (0.15) 0.29 (0.12) 0.29 (0.12) 

 
30 June - 6 July 0.16 (0.10) 0.04 (0.04) 0.11 (0.10) 0.08 (0.07) 0.08 (0.07) 

 
7 July  & later 0.05 (0.04) 0.06 (0.03) 0.05 (0.05) 0.03 (0.03) 0.03 (0.03) 

       2005 15 June & earlier 0.05 (0.02) 0.15 (0.05) 0.10 (0.05) 0.23 (0.07) 0.23 (0.07) 

 
16 - 22 June 0.25 (0.08) 0.61 (0.09) 0.42 (0.11) 0.25 (0.09) 0.25 (0.09) 

 
23 - 29 June 0.24 (0.09) 0.07 (0.06) 0.25 (0.11) 0.23 (0.10) 0.23 (0.10) 

 
30 June - 6 July 0.38 (0.10) 0.13 (0.08) 0.16 (0.09) 0.22 (0.10) 0.22 (0.10) 

 
7 July  & later 0.06 (0.02) 0.01 (0.01) 0.06 (0.04) 0.05 (0.03) 0.05 (0.03) 

       2006 15 June & earlier 0.02 (0.01) 0.01 (0.01) 0.05 (0.05) 0.18 (0.04) 0.18 (0.04) 

 
16 - 22 June 0.15 (0.06) 0.27 (0.07) 0.28 (0.12) 0.38 (0.09) 0.38 (0.09) 

 
23 - 29 June 0.27 (0.06) 0.27 (0.07) 0.24 (0.11) 0.24 (0.07) 0.24 (0.07) 

 
30 June - 6 July 0.36 (0.07) 0.36 (0.08) 0.18 (0.11) 0.13 (0.07) 0.13 (0.07) 

 
7 July  & later 0.17 (0.05) 0.07 (0.03) 0.22 (0.11) 0.05 (0.03) 0.05 (0.03) 

       2007 15 June & earlier 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00) 

 
16 - 22 June 0.24 (0.13) 0.48 (0.11) 0.39 (0.17) 0.30 (0.12) 0.30 (0.12) 

 
23 - 29 June 0.40 (0.11) 0.31 (0.08) 0.34 (0.15) 0.40 (0.10) 0.40 (0.10) 

 
30 June - 6 July 0.25 (0.09) 0.13 (0.05) 0.10 (0.09) 0.24 (0.08) 0.24 (0.08) 

  7 July  & later 0.08 (0.03) 0.06 (0.02) 0.13 (0.07) 0.03 (0.02) 0.03 (0.02) 
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Table 9. Total abundance by tributary group in each year estimated with the base BART model. Values are presented as mean (SD). 
Year Tributary Group 

 
Mainstem (MST) Aniak (AMT) Salmon (SAL) George (GEO) Hoholitna (HOH) Holitna (HLT) 

2003 17,041 (3,514) 20,337 (4,077) 2,465 (850) 3,220 (1,040) 10,958 (2,458) 19,154 (3,840) 
2004 30,884 (6,341) 43,931 (8,505) 4,826 (1,830) 5,615 (541) 20,545 (4,727) 26,191 (5,614) 
2005 24,019 (4,681) 22,894 (4,694) 2,371 (1,015) 3,837 (371) 15,304 (3,377) 28,393 (5,522) 
2006 21,781 (4,395) 43,779 (7,631) 5,883 (1,872) 4,436 (423) 15,532 (3,416) 40,553 (7,185) 
2007 11,701 (3,589) 27,438 (6,851) 6,086 (598) 4,039 (394) 9,531 (3,099) 25,707 (6,565) 

       

 
Kogrukluk (KGK) Stony (STN) Swift (SWF) Tatlawiksuk (TLS) 

Upper Kuskokwim 
Tribs. (UKT) Takotna (TAK) 

2003 11,943 (1,195) 2,638 (920) 7,784 (1,894) 3,965 (1,149) 8,389 (1,955) 396 (39) 
2004 18,709 (1,753) 6,230 (2,177) 10,648 (2,938) 2,929 (285) 5,206 (1,886) 469 (47) 
2005 20,623 (1,905) 9,674 (2,488) 7,791 (1,963) 3,067 (292) 6,512 (1,805) 503 (50) 
2006 18,790 (1,752) 16,544 (3,557) 15,268 (3,434) 1,826 (180) 10,540 (2,564) 541 (54) 
2007 17,224 (4,719) 7,524 (2,489) 11,985 (3,781) 2,092 (204) 8,757 (2,828) 415 (41) 
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Table 10a. Stock composition of the run (θij) for Kuskokwim River Chinook salmon at Birch Tree Crossing (rkm 294) for 
tributaries group within each time strata during 2003-2005. See Table 1 for tributary group names and Table 5 for time 
strata dates. Values are presented as means (SD). 

 
Tributary Group 

Strata MST AMT SAL GEO HOH HLT KGK STN SWF TLS UKT TAK 
             2003 

1 0.27 
(0.05) 

0.08 
(0.03) 

0.02 
(0.02) 

0.02 
(0.02) 

0.08 
(0.03) 

0.16 
(0.04) 

0.08 
(0.03) 

0.02 
(0.02) 

0.05 
(0.02) 

0.05 
(0.02) 

0.16 
(0.04) 

0.01 
(0.00) 

2 0.18 
(0.03) 

0.18 
(0.03) 

0.02 
(0.01) 

0.01 
(0.01) 

0.13 
(0.03) 

0.19 
(0.03) 

0.09 
(0.03) 

0.01 
(0.01) 

0.08 
(0.02) 

0.05 
(0.02) 

0.06 
(0.02) 

0    (0) 

3 0.11 
(0.03) 

0.25 
(0.04) 

0.03 
(0.02) 

0.04 
(0.02) 

0.06 
(0.02) 

0.18 
(0.03) 

0.09 
(0.03) 

0.02 
(0.01) 

0.10 
(0.03) 

0.02 
(0.01) 

0.10 
(0.03) 

0    (0) 

4 0.13 
(0.03) 

0.19 
(0.04) 

0.02 
(0.01) 

0.04 
(0.02) 

0.13 
(0.03) 

0.16 
(0.04) 

0.19 
(0.04) 

0.04 
(0.02) 

0.04 
(0.02) 

0.03 
(0.02) 

0.03 
(0.02) 

0    (0) 

5 0.16 
(0.04) 

0.17 
(0.05) 

0.03 
(0.02) 

0.03 
(0.02) 

0.07( 
0.03) 

0.22 
(0.05) 

0.07 
(0.03) 

0.02 
(0.01) 

0.09 
(0.03) 

0.06 
(0.03) 

0.08 
(0.03) 

0    (0) 

             2004 
1 0.29 

(0.06) 
0.21 

(0.06) 
0.02 

(0.02) 
0.04 

(0.03) 
0.11 

(0.04) 
0.04 

(0.03) 
0.05 

(0.03) 
0.02 

(0.02) 
0.08 

(0.04) 
0.06 

(0.03) 
0.07 

(0.03) 
0.01 

(0.00) 
2 0.19 

(0.04) 
0.22 

(0.04) 
0.04 

(0.02) 
0.03 

(0.01) 
0.14 

(0.04) 
0.15 

(0.04) 
0.06 

(0.03) 
0.02 

(0.02) 
0.10 

(0.03) 
0.01 

(0.01) 
0.04 

(0.02) 
0    (0) 

3 0.15 
(0.03) 

0.23 
(0.04) 

0.01 
(0.01) 

0.04 
(0.01) 

0.13 
(0.03) 

0.19 
(0.04) 

0.12 
(0.03) 

0.05 
(0.02) 

0.04 
(0.02) 

0.02 
(0.01) 

0.02 
(0.01) 

0    (0) 

4 0.10 
(0.04) 

0.32 
(0.07) 

0.04 
(0.03) 

0.02 
(0.02) 

0.08 
(0.04) 

0.10 
(0.04) 

0.25 
(0.06) 

0.04 
(0.03) 

0.02 
(0.02) 

0.01 
(0.01) 

0.02 
(0.02) 

0    (0) 

5 0.23 
(0.05) 

0.34 
(0.05) 

0.02 
(0.02) 

0.03 
(0.02) 

0.07 
(0.03) 

0.18 
(0.04) 

0.04 
(0.02) 

0.02 
(0.02) 

0.05 
(0.02) 

0.01 
(0.01) 

0.01 
(0.01) 

0    (0) 

             2005 
1 0.20 

(0.04) 
0.14 

(0.03) 
0.02 

(0.02) 
0.02 

(0.01) 
0.13 

(0.03) 
0.11 

(0.03) 
0.14 

(0.03) 
0.03 

(0.02) 
0.08 

(0.02) 
0.02 

(0.01) 
0.10 

(0.03) 
0.01 

(0.00) 
2 0.17 

(0.04) 
0.12 

(0.03) 
0.02 

(0.01) 
0.03 

(0.02) 
0.09 

(0.03) 
0.17 

(0.04) 
0.09 

(0.03) 
0.07 

(0.02) 
0.15 

(0.03) 
0.04 

(0.01) 
0.05 

(0.02) 
0     

(0) 
3 0.13 

(0.04) 
0.20 

(0.05) 
0.01 

(0.01) 
0.03 

(0.02) 
0.07 

(0.03) 
0.23 

(0.05) 
0.20 

(0.05) 
0.06 

(0.03) 
0.01 

(0.01) 
0.02 

(0.01) 
0.04 

(0.02) 
0     

(0) 
4 0.16 

(0.04) 
0.16 

(0.04) 
0.01 

(0.01) 
0.03 

(0.01) 
0.14 

(0.04) 
0.22 

(0.04) 
0.14 

(0.04) 
0.08 

(0.03) 
0.02 

(0.02) 
0.01 

(0.01) 
0.03 

(0.02) 
0    (0) 

5 0.31 
(0.05) 

0.15 
(0.04) 

0.02 
(0.02) 

0.02 
(0.02) 

0.08 
(0.03) 

0.2 
(0.04) 

0.10 
(0.03) 

0.06 
(0.02) 

0.01 
(0.01) 

0.02 
(0.01) 

0.03 
(0.02) 

0    (0) 
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Table 10b. Stock composition of the run (θij) for Kuskokwim River Chinook salmon at Birch Tree Crossing (rkm 294) for tributaries 
group within each time strata during 2006-2007. See Table 1 for tributary group names and Table 5 for time strata dates. Values 
are presented as mean (SD). 

 
Tributary Group 

Strata MST AMT SAL GEO HOH HLT KGK STN SWF TLS UKT TAK 
             2006 

1 0.14 
(0.06) 

0.06 
(0.04) 

0.03 
(0.03) 

0.03 
(0.03) 

0.09 
(0.05) 

0.09 
(0.05) 

0.03 
(0.03) 

0.09 
(0.05) 

0.03 
(0.03) 

0.02 
(0.02) 

0.37 
(0.08) 

0.02 
(0.01) 

2 0.16 
(0.04) 

0.12 
(0.04) 

0.08 
(0.03) 

0.01 
(0.01) 

0.07 
(0.03) 

0.17 
(0.04) 

0.11 
(0.04) 

0.06 
(0.03) 

0.10 
(0.03) 

0.01 
(0.01) 

0.10 
(0.03) 

0.01 
(0.00) 

3 0.11 
(0.02) 

0.31 
(0.03) 

0.02 
(0.01) 

0.02 
(0.01) 

0.08 
(0.02) 

0.16 
(0.03) 

0.10 
(0.02) 

0.08 
(0.02) 

0.07 
(0.02) 

0.01 
(0.00) 

0.04 
(0.01) 

0    (0) 

4 0.07 
(0.02) 

0.22 
(0.04) 

0.02 
(0.01) 

0.03 
(0.01) 

0.08 
(0.03) 

0.25 
(0.04) 

0.11 
(0.03) 

0.10 
(0.03) 

0.09 
(0.03) 

0.01 
(0.00) 

0.02 
(0.01) 

0    (0) 

5 0.13 
(0.03) 

0.22 
(0.04) 

0.01 
(0.01) 

0.04 
(0.02) 

0.07 
(0.03) 

0.29 
(0.05) 

0.07 
(0.03) 

0.10 
(0.03) 

0.04 
(0.02) 

0.01 
(0.01) 

0.02 
(0.01) 

0    (0) 

             2007 
1 0.08 

(0.08) 
0.08 

(0.08) 
0.09 

(0.08) 
0.08 

(0.08) 
0.09 

(0.08) 
0.17 
(0.1) 

0.08 
(0.08) 

0.09 
(0.08) 

0.08 
(0.08) 

0.08 
(0.07) 

0.08 
(0.07) 

0    (0) 

2 0.10 
(0.04) 

0.19 
(0.06) 

0.06 
(0.03) 

0.02 
(0.01) 

0.08 
(0.04) 

0.17 
(0.05) 

0.13 
(0.05) 

0.04 
(0.03) 

0.13 
(0.05) 

0.02 
(0.01) 

0.06 
(0.03) 

0    (0) 

3 0.08 
(0.02) 

0.22 
(0.03) 

0.03 
(0.01) 

0.03 
(0.01) 

0.06 
(0.02) 

0.21 
(0.03) 

0.14 
(0.03) 

0.06 
(0.02) 

0.08 
(0.02) 

0.02 
(0.01) 

0.07 
(0.02) 

0    (0) 

4 0.07 
(0.03) 

0.23 
(0.04) 

0.05 
(0.02) 

0.05 
(0.02) 

0.08 
(0.03) 

0.19 
(0.04) 

0.12 
(0.03) 

0.07 
(0.03) 

0.06 
(0.02) 

0.01 
(0.01) 

0.07 
(0.03) 

0    (0) 

5 0.1 
(0.03) 

0.16 
(0.04) 

0.03 
(0.02) 

0.05 
(0.02) 

0.08 
(0.03) 

0.27 
(0.05) 

0.1 
(0.03) 

0.07 
(0.03) 

0.08 
(0.03) 

0.03 
(0.02) 

0.03 
(0.02) 

0    (0) 
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Figure 1. Estimated Chinook Salmon abundance north of Birch Tree Crossing. Estimates from Schaberg et 
al. (2012) are from a previously conducted mark-recapture study using the same data.  
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Figure 2. Estimated Chinook Salmon abundance for each of four large, composite tributary groups 
during 2003-2007 by time strata. All estimates were generated under the Bayesian ART Model using the 
base weir data with no shared run timing across years. (See Table 2 for tributaries that comprise each 
group.) 
 



111 
 

 
Figure 3. Mean run timing proportions from the base BART model for each of 12 tributary groups across 
time strata. Run timing proportions for each tributary group in each time strata were averaged across 
years (2003-2007). See Table 1 for tributary group abbreviations. 
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Figure 4. Proportional composition of the run in each time strata during 2003-2007. Proportions are 
shown for four large composite tributary groups. See Table 1 for information on specific tributaries 
contained within each group. 
 



113 
 

 
Figure 5. Estimated Chinook salmon abundance north of Birch Tree Crossing in response to differing 
prior distributions for the variance assigned to the abundance (i.e., gillnet CPUE) index for each time 
strata during 2003-2007. Individual panels represent years with individual.  All estimates were generated 
under the  BART Model using the base weir data (Hansen and Blain 2014) with no shared run timing 
across years. 
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Figure 6. Estimated Chinook salmon abundance north of Birch Tree Crossing in response to changes in 
the prior Dirichlet distribution used for 2003-2007. All estimates were generated under the BART model 
using the base weir data with no shared run timing across years. 
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Appendix A. Code for base BART model 
#### Import Data #### 
#import total weir counts from each weir (from Schaberg et al. 2012)  
log.Ni.hat = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest x_matrix/data/2003_weirs_BASE.csv") 
 
#import x matix for final locations 
#order is: (1)MST, (2)AMT, (3)SAL, (4)GEO, (5)HOH, (6)HLT, (7)KGK, (8)STN, (9)SWF, (10)TLS, (11)UKT, 
(12)TAK 
x = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random Effects 
SSART/shared run timing - staton methods - newest x_matrix/data/2003_x_mat_12_grps_5_strata.csv") 
 
#import log value for index of abundance (CPUE) in each time strata 
log.index = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random Effects 
SSART/shared run timing - staton methods - newest x_matrix/data/2003_log_index_5_strata.csv") 
#providing values of coefficient of variation for abundance at each weir  
cv.N = c(0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.1, 0.1) 
#total number of chinook successfully tracked (i.e., fish was assigned to one of the 12 tribs. groups) 
during each time strata 
n = array(0, dim=c(5, 1)) 
n[,1] = c(sum(x[1,]), sum(x[2,]), sum(x[3,]), sum(x[4,]), sum(x[5,]))                          
 
#### Specify Bayesian Analysis of Abundance and Run Timing (BART) model #### 
 
#Write model 
mod = function(){ 
   
  tau.index ~ dgamma(100,1)                         
  sigma.index <- 1 / sqrt(tau.index)  
     
    N ~ dnorm(0,1.0E-12) %_% I(1,)                                   
    q ~ dbeta(1,1)  
     
    D.sum <- sum(D[1:11,1:5]) 
     
    for(i in 1:10) {                                      
      N.i[i] <- sum(N.ij[i,1:5])    
      log.Ni.hat[i,1] ~ dnorm(log.Ni[i],tau.logNi[i])       
      log.Ni[i] <- log(N.i[i])                            
      tau.logNi[i] <- 1 / log(cv.N[i] * cv.N[i] + 1)      
       
      for(j in 1:5) {                                    
        D[i,j] ~ dgamma(1,0.1) 
        pi[i,j] <- D[i,j] / D.sum                
        N.ij[i,j] <- pi[i,j] * N              
        theta[j,i] <- N.ij[i,j] / N.j[j]           
        pi.Ni[i,j] <- N.ij[i,j] / N.i[i] 
      } 
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    }   
     
    for(i in 11:11) {                                    
      N.i[i] <- sum(N.ij[i,1:5])    
      log.Ni.hat[i,1] ~ dnorm(log.Ni[i],tau.logNi[i])       
      log.Ni[i] <- log(N.i[i])                            
      tau.logNi[i] <- 1 / log(cv.N[i] * cv.N[i] + 1) 
      prop ~ dbeta(1,1) 
       
      for(j in 1:5) {    
        D[i,j] ~ dgamma(1,0.1) 
        pi[i,j] <- (D[i,j]*prop) / D.sum               
        N.ij[i,j] <- pi[i,j] * N                  
        theta[j,i] <- N.ij[i,j] / N.j[j]           
        pi.Ni[i,j] <- N.ij[i,j] / N.i[i] 
      } 
    } 
     
    for(i in 12:12) {                                    
      N.i[i] <- sum(N.ij[i,1:5])    
      log.Ni.hat[i,1] ~ dnorm(log.Ni[i],tau.logNi[i])       
      log.Ni[i] <- log(N.i[i])                            
      tau.logNi[i] <- 1 / log(cv.N[i] * cv.N[i] + 1) 
       
      for(j in 1:5) {                                   
        pi[i,j] <- (D[i-1,j]*(1-prop)) / D.sum                
        N.ij[i,j] <- pi[i,j] * N                 
        theta[j,i] <- N.ij[i,j] / N.j[j]           
        pi.Ni[i,j] <- N.ij[i,j] / N.i[i] 
      } 
    } 
     
    for(j in 1:5) {                                       
      N.j[j] <- sum(N.ij[1:12,j])                     
      log.Nq[j] <- log(N.j[j] * q)                 
      log.index[j,1] ~ dnorm(log.Nq[j], tau.index)      
       
      x[j,1:12] ~ dmulti(theta[j,1:12],n[j,1])        
    } 
   
  #derived quantities 
    N.MST <- sum(N.i[1]) 
    N.MKT <- sum(N.i[2:4]) 
    N.HLT <- sum(N.i[5:7]) 
    N.UKT <- sum(N.i[8:12]) 
     
    for (j in 1:5){ 
      N.MST.j[j] <- sum(N.ij[1,j]) 
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      N.MKT.j[j] <- sum(N.ij[2:4,j]) 
      N.HLT.j[j] <- sum(N.ij[5:7,j]) 
      N.UKT.j[j] <- sum(N.ij[8:12,j]) 
    } 
} 
 
model.file = "model.txt" 
write.model(mod, model.file) 
 
#bundle data to send to JAGS 
win.data=list(log.Ni.hat = log.Ni.hat, x = x, log.index = log.index, cv.N = cv.N, n = n) 
 
#initial parameters 
inits1 = list(N = (200000), 
              tau.index = 10, 
              q = 0.01, 
              D = array(20, dim=c(11, 5))) 
 
inits2 = list(N = c(150000), 
              tau.index = 12, 
              q = 0.001,  
              D = array(15, dim=c(11, 5))) 
 
inits=list(inits1,inits2) 
 
# Parameters to estimate 
params <- c("theta", "N.ij", "q", "N.i", "N.j", "pi", "tau.index", "sigma.index", "D", "N", "D.sum", 
"log.Ni.hat", "prop", "log.index", "N.MST", "N.MKT", "N.HLT", "N.UKT", "N.MST.j", "N.MKT.j", "N.HLT.j", 
"N.UKT.j","pi.Ni","log.Nq") 
 
# MCMC settings 
nc = 2  ;  ni = 500000 ;  nb = 50000 ;  nt = 100 
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Appendix B. Code for base BART model with shared run timing among years 
# Import Data 
 
##### Import weir data #### 
#create an empty matrix for final location 
log.Ni.hat = array(0, dim=c(12, 5)) 
# order is: (1)MST, (2)AMT, (3)SAL, (4)GEO, (5)HOH,(6)HLT, (7)KGK, (8)STN, (9)SWF, (10)TLS,
 (11)UKT, (12)TAK 
#2003 
log.Ni.hat.03 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest x_matrix/data/2003_weirs_BASE.csv") 
 
#2004 
log.Ni.hat.04 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest x_matrix/data/2004_weirs_BASE.csv") 
 
#2005 
log.Ni.hat.05 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest x_matrix/data/2005_weirs_BASE.csv") 
 
#2006 
log.Ni.hat.06 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest x_matrix/data/2006_weirs_BASE.csv") 
 
#2007 
log.Ni.hat.07 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest x_matrix/data/2007_weirs_BASE.csv") 
 
#combining annual log.Ni.hat files into a single matrix 
log.Ni.hat[,1] = log.Ni.hat.03[,1] 
log.Ni.hat[,2] = log.Ni.hat.04[,1] 
log.Ni.hat[,3] = log.Ni.hat.05[,1] 
log.Ni.hat[,4] = log.Ni.hat.06[,1] 
log.Ni.hat[,5] = log.Ni.hat.07[,1] 
 
 
#### Import final location data in x-matrix #### 
#create an empty matrix for final location 
x = array(0, dim=c(5, 12, 5)) 
# order is: (1)MST,  (2)AMT,  (3)SAL, (4)GEO, (5)HOH, (6)HLT, (7)KGK, (8)STN, (9)SWF, (10)TLS, 
(11)UKT, (12)TAK 
 
# 2003 
x_03 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random Effects 
SSART/shared run timing - staton methods - newest x_matrix/data/2003_x_mat_12_grps_5_strata.csv") 
 
 
 



119 
 

 
# 2004 
x_04 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random Effects 
SSART/shared run timing - staton methods - newest x_matrix/data/2004_x_mat_12_grps_5_strata.csv") 
 
# 2005 
x_05 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random Effects 
SSART/shared run timing - staton methods - newest x_matrix/data/2005_x_mat_12_grps_5_strata.csv") 
 
# 2006 
x_06 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random Effects 
SSART/shared run timing - staton methods - newest x_matrix/data/2006_x_mat_12_grps_5_strata.csv") 
 
# 2007 
x_07 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random Effects 
SSART/shared run timing - staton methods - newest x_matrix/data/2007_x_mat_12_grps_5_strata.csv") 
 
for (r in 1:5){ 
  for (c in 1:12){ 
    x[r,c,1] = x_03[r,c] 
    x[r,c,2] = x_04[r,c] 
    x[r,c,3] = x_05[r,c] 
    x[r,c,4] = x_06[r,c] 
    x[r,c,5] = x_07[r,c] 
  } 
} 
 
#### Import index of abundance data #### 
#create an empty matrix for indices of abundance 
log.index = array(0, dim=c(5,5)) 
 
#log value for index of abundance (CPUE) in each time strata in 2003 
log.index_03 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest 
x_matrix/data/2003_log_index_5_strata.csv") 
 
#log value for index of abundance (CPUE) in each time strata in 2004 
log.index_04 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest 
x_matrix/data/2004_log_index_5_strata.csv") 
 
#log value for index of abundance (CPUE) in each time strata in 2005 
log.index_05 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest 
x_matrix/data/2005_log_index_5_strata.csv") 
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#log value for index of abundance (CPUE) in each time strata in 2006 
log.index_06 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest 
x_matrix/data/2006_log_index_5_strata.csv") 
 
#log value for index of abundance (CPUE) in each time strata in 2007 
log.index_07 = read.csv("C:/Users/farmetm/Documents/AYK SSI Work/R code/SSART Kusko/Random 
Effects SSART/shared run timing - staton methods - newest 
x_matrix/data/2007_log_index_5_strata.csv") 
 
for (i in 1:5){ 
  log.index[i,1] = log.index_03[i,1] 
  log.index[i,2] = log.index_04[i,1] 
  log.index[i,3] = log.index_05[i,1] 
  log.index[i,4] = log.index_06[i,1] 
  log.index[i,5] = log.index_07[i,1] 
} 
 
#### create CV data for weirs ##### 
#providing values of coefficient of variation for abundance at each weir  
cv.N = c(0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10) 
 
#### create n-matrix - total final locations in each strata #### 
#create an empty matrix for indices of abundance 
n = array(0, dim=c(5, 5)) 
 
#total number of chinook successfully tracked during in each time strata in 2003 
n[,1] = c(sum(x[1,,1]), sum(x[2,,1]), sum(x[3,,1]), sum(x[4,,1]), sum(x[5,,1]))                          
 
#total number of chinook successfully tracked during in each time strata in 2004 
n[,2] = c(sum(x[1,,2]), sum(x[2,,2]), sum(x[3,,2]), sum(x[4,,2]), sum(x[5,,2]))   
 
#total number of chinook successfully tracked during each time strata in 2005 
n[,3] = c(sum(x[1,,3]), sum(x[2,,3]), sum(x[3,,3]), sum(x[4,,3]), sum(x[5,,3])) 
 
#total number of chinook successfully tracked during each time strata in 2006 
n[,4] = c(sum(x[1,,4]), sum(x[2,,4]), sum(x[3,,4]), sum(x[4,,4]), sum(x[5,,4])) 
 
#total number of chinook successfully tracked during each time strata in 2007 
n[,5] = c(sum(x[1,,5]), sum(x[2,,5]), sum(x[3,,5]), sum(x[4,,5]), sum(x[5,,5])) 
 
#### Specify Bayesian Analysis of Abundance and Run Timing (BART) model #### 
#Write model 
mod = function(){ 
   
  tau.index ~ dgamma(100,1)                         
  sigma.index <- 1 / sqrt(tau.index)  
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  #setting up some constraints for alpha 
  for (j in 1:5) { 
    for (i in 1:11) {                                                     
      alpha[i,j] ~ dgamma(0.001,0.001) 
    } 
  } 
   
  for(y in 1:5){                                        
     
    N[y] ~ dnorm(0,1.0E-12) %_% I(1,)                                   
    q[y] ~ dbeta(1,1)  
     
    for(i in 1:11) {                                    
      for(j in 1:5) { 
        D[i,j,y] ~ dgamma(alpha[i,j],0.1)                
      } 
    } 
     
    D.sum[y] <- sum(D[1:11,1:5,y]) 
     
    for(i in 1:10) {                                    
      N.i[i,y] <- sum(N.ij[i,1:5,y])    
      log.Ni.hat[i,y] ~ dnorm(log.Ni[i,y],tau.logNi[i,y])       
      log.Ni[i,y] <- log(N.i[i,y])                            
      tau.logNi[i,y] <- 1 / log(cv.N[i] * cv.N[i] + 1)      
       
      for(j in 1:5) {                                    
        pi[i,j,y] <- D[i,j,y] / D.sum[y]                
        N.ij[i,j,y] <- pi[i,j,y] * N[y]              
        theta[j,i,y] <- N.ij[i,j,y] / N.j[j,y]           
        pi.Ni[i,j,y] <- N.ij[i,j,y] / N.i[i,y] 
      } 
    }   
     
    for(i in 11:11) {                                       
      N.i[i,y] <- sum(N.ij[i,1:5,y])    
      log.Ni.hat[i,y] ~ dnorm(log.Ni[i,y],tau.logNi[i,y])       
      log.Ni[i,y] <- log(N.i[i,y])                            
      tau.logNi[i,y] <- 1 / log(cv.N[i] * cv.N[i] + 1) 
      prop[y] ~ dbeta(1,1) 
       
      for(j in 1:5) {                                    
        pi[i,j,y] <- (D[i,j,y]*prop[y]) / D.sum[y]                
        N.ij[i,j,y] <- pi[i,j,y] * N[y]                  
        theta[j,i,y] <- N.ij[i,j,y] / N.j[j,y]           
        pi.Ni[i,j,y] <- N.ij[i,j,y] / N.i[i,y] 
      } 
    } 
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    for(i in 12:12) {                                      
      N.i[i,y] <- sum(N.ij[i,1:5,y])    
      log.Ni.hat[i,y] ~ dnorm(log.Ni[i,y],tau.logNi[i,y])       
      log.Ni[i,y] <- log(N.i[i,y])                            
      tau.logNi[i,y] <- 1 / log(cv.N[i] * cv.N[i] + 1) 
       
      for(j in 1:5) {                                     
        pi[i,j,y] <- (D[i-1,j,y]*(1-prop[y])) / D.sum[y]                
        N.ij[i,j,y] <- pi[i,j,y] * N[y]                  
        theta[j,i,y] <- N.ij[i,j,y] / N.j[j,y]           
        pi.Ni[i,j,y] <- N.ij[i,j,y] / N.i[i,y] 
      } 
    } 
     
    for(j in 1:5) {                                       
      N.j[j,y] <- sum(N.ij[1:12,j,y])                     
      log.Nq[j,y] <- log(N.j[j,y] * q[y])                
      log.index[j,y] ~ dnorm(log.Nq[j,y], tau.index)      
       
      x[j,1:12,y] ~ dmulti(theta[j,1:12,y],n[j,y])       
    } 
  } 
   
  #derived quantities 
  for (y in 1:5){ 
    N.MST[y] <- sum(N.i[1, y]) 
    N.MKT[y] <- sum(N.i[2:4, y]) 
    N.HLT[y] <- sum(N.i[5:7, y]) 
    N.UKT[y] <- sum(N.i[8:12, y]) 
     
    for (j in 1:5){ 
      N.MST.j[j,y] <- sum(N.ij[1,j,y]) 
      N.MKT.j[j,y] <- sum(N.ij[2:4,j,y]) 
      N.HLT.j[j,y] <- sum(N.ij[5:7,j,y]) 
      N.UKT.j[j,y] <- sum(N.ij[8:12,j,y]) 
       
      p.MST.j[j,y] <- N.MST.j[j,y]/N.MST[y] 
      p.MKT.j[j,y] <- N.MKT.j[j,y]/N.MKT[y] 
      p.HLT.j[j,y] <- N.HLT.j[j,y]/N.HLT[y] 
      p.UKT.j[j,y] <- N.MST.j[j,y]/N.UKT[y] 
    } 
  } 
} 
 
model.file = "model.txt" 
write.model(mod, model.file) 
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#bundle data to send to JAGS 
win.data=list(log.Ni.hat = log.Ni.hat, x = x, log.index = log.index, cv.N = cv.N, n = n) 
 
#initial parameters 
inits1 = list(N = c(200000, 200000, 200000, 200000, 200000), 
              tau.index = 10, 
              alpha = array(0.01, dim=c(11,5)), 
              q = c(0.01, 0.01, 0.01, 0.01, 0.01), 
              D = array(20, dim=c(11, 5, 5))) 
inits2 = list(N = c(150000, 150000, 150000, 150000, 150000), 
              tau.index = 12, 
              alpha = array(0.05, dim=c(11,5)), 
              q = c(0.001, 0.001, 0.001, 0.001, 0.001), 
              D = array(15, dim=c(11, 5, 5))) 
 
inits=list(inits1,inits2) 
 
# Parameters to estimate 
params <- c("theta", "N.ij", "q", "N.i", "N.j", "pi", "tau.index", "sigma.index", "D", "alpha", "N", "D.sum", 
"log.Ni.hat", "prop", "log.index", "N.MST", "N.MKT", "N.HLT", "N.UKT", "N.MST.j", "N.MKT.j", "N.HLT.j", 
"N.UKT.j", "p.MST.j", "p.MKT.j", "p.HLT.j", "p.UKT.j", "pi.Ni","log.Nq") 
 
# MCMC settings 
nc = 2  ;  ni = 1000000  ;  nb = 50000  ;  nt = 200 
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CHAPTER 5 
 

ASSOCIATIONS BETWEEN ALASKAN CHINOOK SALMON POPULATION CHARACTERISTICS AND 
DRAINAGE-WIDE HABITAT VARIABLES 

 
ABSTRACT 

 Management strategies for Alaska Chinook salmon rely on biological reference points (e.g., SMSY) 
to set harvest targets which are traditionally derived using spawner-recruit analysis. However, not all 
stocks in Alaska are sampled intensively enough to allow for derivation of reference points through 
spawner-recruit analyses, yet their management must still be based on stock-specific reference points. 
Habitat-based methods have been developed to predict SMSY for stocks without adequate spawner-
recruit information based on a subset of stocks that do have this information. These models form a 
linear predictive relationship between SMSY and certain habitat characteristics (e.g., drainage area) that 
can be used for more data-limited stocks. Here I build on this work by developing a hierarchical 
modeling approach for Alaskan Chinook salmon stocks that incorporates the uncertainty in stock-
specific SMSY and applying a suite of model selection techniques to select habitat variables that have 
predictive credibility. Findings showed that hierarchical inclusion of uncertainty in SMSY did not remove 
the relationship between drainage area and SMSY, showing that this relationship may still be used even 
when including this additional source of variation. Three of the four variable selection techniques 
consistently agreed on the best variables. The deviance information criterion performed poorly at 
distinguishing models and potential explanations are discussed. Drainage area as the sole predictor was 
unanimously chosen by the best model under the three remaining model selection approaches. 
 
  



125 
 

INTRODUCTION 
Management strategies for Chinook salmon (Oncorhynchus tshawytscha) stocks rely on 

estimates of biological reference points (e.g. SMSY) to set harvest targets. Ideally, these reference points 
are derived using spawner-recruit analysis on a time series of spawner and return counts which provides 
information regarding productivity, carrying capacity, and strength of compensation of the stock. 
However, many Chinook salmon stocks are not sampled intensively enough for reliable estimation of 
biological reference points via spawner-recruit analysis. In these more data-limited situations, habitat-
based assessment approaches have been used. These methods use habitat variables that are related to 
salmon productivity and capacity to build models using estimates from stocks with adequate spawner-
recruit data. The coefficient estimates from this model can then be used for prediction of reference 
points for stocks that have inadequate spawner-recruit data. 

One habitat variable that has shown promise in these models is the area of the drainage for 
each stock. Parken et al. (2006) developed such a model using stocks from Oregon, Washington, British 
Columbia, and Alaska. However, a predictive model has not yet been developed for exclusively Alaskan 
stocks (i.e., those that spawn in rivers that originate in Alaska), which will be the focus of this chapter. 
Although several of the stocks used in the present analysis were also used by Parken et al (2006), the 
data for these stocks have since been updated with more current information and the individual 
spawner-recruit analyses for each stock used a more rigorous Bayesian state-space approach (Catalano 
2012).  

The methodology for the modeling approach presented here differs in two primary ways from 
that of Parken et al. (2006). First, Parken et al. (2006) treated the reference points (i.e., the response 
variable) as known quantities, when they are really derived from parameters estimated from a spawner-
recruit analysis. Spawner-recruit relationships are inherently noisy and as a result, their parameters and 
the derived reference points (equations 2.09-2.011, Chapter 2, this Thesis) contain substantial 
uncertainty. Treating the reference points as known quantities ignores this uncertainty and may lead to 
conclusions that would not be valid were this uncertainty included (Brooks and Debora 2015). For this 
reason, a hierarchical modeling approach is implemented here to allow for incorporation of the 
uncertainty in the reference points that the model is fit to. The model is cast in the Bayesian mode of 
inference which allows for an intuitive framework to include this additional source of uncertainty. 
Second, model uncertainty will be introduced into the habitat-based modeling approach by examining 
additional habitat variables. These additional variables are hypothesized to influence salmon 
productivity and capacity and are available via remote sensing techniques. 

The Parken et al. (2006) model is not the only predictive habitat-based model for Chinook 
salmon. Liermann et al. (2010) developed an integrated hierarchical model that included an intrinsic link 
between watershed area and spawner-recruit parameters in the model fitting. Thus, the Liermann et al. 
(2010) model used not only the stock-specific spawner-recruit data but also habitat information to 
estimate the spawner-recruit relationships for stocks used in their model. This sharing of information 
between stocks was intended to improve predictive performance by reducing uncertainty in the 
predictive relationship. Although the analyses presented in this chapter do not share information 
between stocks when fitting the spawner-recruit relationships, as in the Liermann et al. (2010) analysis, 
the regression coefficients of the habitat model are estimated from all stocks. 

Model selection is an area of active research in ecological modeling as a means to variable 
selection (Hooten and Hobbs 2015; Anderson et al. 2008). Of particular interest are methods for model 
selection for analyses in the Bayesian mode of inference as no one unified approach performs well for all 
models (Hooten and Hobbs 2015). Much of this disagreement revolves around the requirement of the 
prior in Bayesian analyses because objective methods for choosing appropriate priors do not exist. This 
deficiency remains one of the most prevalent criticisms of the Bayesian framework, as two investigators 
can obtain different results based on prior beliefs. The prior makes information theoretic approaches to 
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Bayesian model selection particularly troublesome, as there are no truly free parameters in the Bayesian 
context due to the information content in the prior, however uninformative it may be (Hooten and 
Hobbs 2015). Thus, four different approaches are applied here to selecting habitat variables based on 
their predictive abilities while accounting for uncertainty in the response variable: variable indicator 
selection, the deviance information criterion (DIC), the Akaike information criterion (AIC) using 
randomized posterior samples, and leave-one-out cross validation. So in addition to investigating the 
relationship between various habitat variables with SMSY, this chapter also presents a comparison of 
various approaches to model selection. The objectives of the analyses presented in this chapter are to 
(1) develop a habitat-based predictive model for data-poor Alaskan Chinook salmon stocks that explicitly 
incorporates uncertainty in the estimates that it is fit to by (2) evaluating the agreement in the best 
predictor variables between a variety of model selection techniques. 

 
METHODS 

Study Area and Species 
This study uses information from Chinook salmon stocks across the state of Alaska (Figure 4.01). 

Chinook salmon are an important species for commercial, subsistence, and recreational fisheries across 
the state. In the past decade, many Chinook salmon stocks across the state have seen declines in 
productivity, making adequate treatment of uncertainty in management quantities of paramount 
importance. Catalano (2012) conducted a meta-analysis of 15 Chinook salmon stocks across the state of 
Alaska by developing Bayesian state-space spawner-recruit models for each stock that gave marginal 
posterior distributions for stock-specific SMSY. The summaries of these posterior distributions are used to 
fit the regression models in this chapter. 

The stocks used in this analysis cover a wide range in terms of maximum productivity (2.08 – 
8.95 recruits per spawner), stock abundance (8,800 – 244,000 average recruits), and drainage area (562 
– 286,000 km2). Geographically, these stocks are spread all throughout the state (Figure 4.01) including 
southeastern Alaska (Stikine, Taku, and Alsek), Kodiak Island (Karluk), western Alaska (Goodnews, 
Kuskokwim, and Unalakleet), and the interior (Chena+Salcha; two rivers, assessed as one stock). 

 
Selected Habitat Variables 

Habitat variables were selected based on a hypothesized effect on salmon productivity or 
stream carrying capacity. Both productivity and capacity impact the SMSY reference point, so any habitat 
variable that may impact these two quantities should be included in the analysis. Three habitat variables 
were selected that each have biological justification for inclusion in the model, as outlined in the 
following sections. The value of these variables for each stock were accessed using the Riverscape 
Analysis Project (RAP) online database (Whited et al. 2012; http://rap.ntsg.umt.edu). Four of the 15 
stocks were outside of the RAP study area, and thus were excluded from this analysis. All habitat 
variables were standardized (scaled and centered) such that no one data point fell too far from zero, as 
recommended by Kéry (2010). 

The area (km2) of the drainage (watershed) of a particular river was hypothesized to influence 
the value of SMSY because a larger area results in more spawning and rearing grounds for salmon, which 
directly impacts the capacity of a system. Drainage area has been shown to have predictive power for 
SMSY in both stream-type (Alaskan stocks) and ocean-type (more southern stocks) Chinook salmon 
(Parken et al. 2006). This variable was log-transformed to linearize the relationship with log(SMSY), 
following Parken et al. (2006). 

Tributaries are the areas within the drainage in which adult salmon typically spawn and juvenile 
salmon spend much of their lives before migrating to sea. Therefore, it stands to reason that drainages 
that have more tributaries should produce more salmon. This variable was expressed as per km2 to 
remove collinearity with area; larger drainages have more tributaries.  Tributary node density was not 

http://rap.ntsg.umt.edu/
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log-transformed as the range was so small that a log-transformation had no effect in linearizing the 
relationship with log(SMSY). 

The shifting habitat mosaic hypothesis predicts that productivity is maximized at high levels of 
stream complexity (Standford et al. 2005). Channel nodes are an indicator of this complexity as they 
represent the amount of braiding in the stream channel and floodplains and so was selected for analysis. 
This variable was standardized by area (km2) for the same reason as tributary nodes. Channel node 
density was not log-transformed as the relationship with log(SMSY) appeared linear. 

 
Model Structure 

Consider the normal linear model where the response variable, yi, is the natural logarithm of 
SMSY for stock i and β0:nare coefficients that describe the linear relationship between habitat variable x1:n 
and yi for stock i. Residual variation in this relationship (variation in y not explained by the habitat 
variables x1:n) is assumed to be independently and identically normally distributed with a mean of zero 
and some standard deviation σ that is freely estimated. 

To incorporate uncertainty in yi (due to estimation and process error in the spawner-recruit 
relationship and measurement error in the data collection) an additional source of variation was 
required, which made the model hierarchical in nature (i.e., having multiple sources of statistical 
uncertainty). First, a model prediction was made based on the underlying linear process that was 
assumed to give rise to the mean log(SMSY) for each stock: 
 μi=β0+β1x1,i…βnxn,i (3.01) 
Equation 3.01 constitutes the linear predictor portion of the model, but it is obvious that there is noise 
in the relationship due to factors other than the selected habitat variables. This additional source of 
variation is commonly referred to as process error. Thus, a stock-specific latent state log(SMSY) was 
sampled from a normal distribution that represents the true log(SMSY) after accounting for this process 
variation around the deterministic relationship: 
 ψi~N(μi, τψ) (3.04) 
where ψi is the latent state for stock i as produced by the habitat relationship and unexplained noise 
and had some estimated precision (inverse of the variance) parameter τψ that was common across all 
stocks. The response variable yi was related to the latent ψi via another stochastic node: 
 yi~N(ψi, τi) (3.05) 
where yi is the posterior mean log(SMSY) and 𝜏𝑖 is the inverse of the posterior variance for stock i, as 
presented by Catalano (2012). 𝜏𝑖 can be interpreted as an assumed measurement error on the true 
state, and its inclusion allowed for the incorporation of uncertainty in the estimated SMSY from the 
analysis presented by Catalano (2012). It is this additional source of uncertainty in the response variable 
(measurement as well as process variation) that is not included in a typical multiple regression. 
 
Habitat Variable Selection 

Four different methods were used for selecting which variables should be included in the final 
predictive habitat-based model. A brief overview of each method is outlined below. 
Indicator Variable Selection (Parameter Inclusion Probability)  

This method used binary indicator parameters that included or excluded habitat variables in 
each Markov Chain Monte Carlo (MCMC) iteration to select variables that were justified in the model. 
The approach sampled an indicator parameter ω from an uninformative Bernoulli distribution for each 
slope coefficient in the process model: 
 ω1:n~Bernoulli(0.5) (3.06) 
These indicators were then included in the linear predictor in equation 3.03 
 μi=β0+ω1β1x1,i…ωnβnxn,i (3.07) 
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For each MCMC iteration, each coefficient was included (ω = 1) or excluded (ω = 0).  The posterior mean 
of ωn can be interpreted as the probability that βnxn should be included in the model. This is a technique 
for incorporating model uncertainty into the model fitting. The combination of coefficients being 
included or excluded in each MCMC iteration results in a total of eight different models. Thus, a model 
probability can be calculated by taking the proportion of MCMC iterations the respective coefficients 
were included in the same MCMC iteration. 

If a variable is excluded from the linear predictor in an iteration (ω = 0), its coefficient is still 
sampled on that iteration. As noted by Hooten and Hobbs (2015), independent diffuse priors in this 
setting can cause computational problems in the MCMC sampling. For example, if the coefficient is 
excluded in one iteration, and the sampler draws a value of the corresponding coefficient with a highly 
diffuse prior, it is possible for the MCMC to get “lost”. Essentially, the sampled value can be so far from 
the majority of the posterior density that the MCMC algorithm cannot return to that density by sampling 
a more likely value and the indicator parameter is never included again. This issue can be addressed in at 
least two ways: (1) through the use of informative priors that prevent the MCMC sampler from getting 
“lost” by making extreme values so unlikely that they are never sampled or (2) the use of reversible 
jump MCMC (RJMCMC), where if ω = 0 for a given iteration, the corresponding coefficient is not 
sampled that iteration. Since a general RJMCMC algorithm has not yet been developed for use in JAGS 
(or OpenBUGS), informative priors were chosen to remedy this issue (Table 1). 

 
Deviance Information Criterion (DIC)  

Information theoretic approaches have gained substantial support in model selection 
techniques and ecological analysis (Anderson et al. 2008). However, as mentioned previously, the 
information contained in the prior makes information theoretic approaches to Bayesian model selection 
troublesome (Spiegelhalter et al. 2014). However, one proposed solution is the deviance information 
criterion (DIC; Spiegelhalter et al. 2002). DIC is the Bayesian analog to the  Akaike information criterion 
(AIC) for models fit in the frequentist mode of inference, in that it uses a measure of statistical fit and 
penalizes it by the number of parameters in the model (Plummer 2008). DIC is calculated as: 
 DIC=D �+pD (3.08) 
where D � is the posterior expectation for model deviance calculated at the posterior means of all 
unknown quantities (Hooten and Hobbs 2015). pD is the effective number of parameters, calculated as D� 
(mean posterior deviance) minus D � .   
 
Randomization with AIC Model Selection  

Another way to incorporate posterior uncertainty in SMSY into the model fitting and selection is 
to randomize and sample from these posterior samples, fit each model to each randomized sample, and 
conduct AIC model selection using each sample. The distribution of the model selections across all 
randomized samples can then serve as the basis for inference on justified variables. The posterior 
distributions of SMSY for each stock contain approximately 10,000 samples each (less than 10,000 after 
removing the very rare negative SMSY). These samples were randomized and all valid samples were used 
for this exercise. Models for this randomization component were fit using ordinary least-square 
methods with the normal linear model instead of Bayesian methods. Inference regarding which 
variables were most important was made using three criteria: (1) frequency of placement of each 
variable in the best model, (2) the distribution of the position of each model in the model selection 
across all samples, and (3) the distribution of model weight for each model across all samples. Although 
the term AIC is used to describe this method of model selection, the information theoretic calculation 
that was used was the version corrected for small sample sizes (AICC; Anderson et al. 2008). 

 
Leave-One-Out Cross Validation 
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 The fourth and final model selection technique used in this analysis is referred to as “k-fold 
cross-validation”. The premise of this method is to test the capability of a model to predict datasets that 
are not included in the model fitting (i.e., the model is unaware of them). K datasets were sequentially 
left out of the model fitting, then compared to their corresponding model prediction to calculate the 
predictive loss of that model (Hooten and Hobbs 2015). In the case where n is small, like in the scenario 
presented in this chapter, one data point can be left out at a time (hence, leave-one-out cross-
validation). Hooten and Hobbs (2015) present a cross-validation score calculation for a single model: 

 ∑ log
∑ P(yk|y-k , θt)T

t=1

T
K
k=1  (3.09) 

where yk is the measured value of the data point left out in the kth run of the model out of K total runs, y-

k is the model prediction for that data point given by the parameters θ on the tth MCMC iteration fit with 
yk left out and T is the number of saved MCMC samples. Since the models assume a normal error 
structure, it is appropriate to use a sum-of-squared residual in place of the likelihood calculation in the 
numerator of equation 3.09. The altered cross-validation score used in this analysis is: 

 ∑
∑ (yk-y-k)2T

t=1

T
K
k=1  (3.10) 

This process was then repeated for all subsets of the full model and the scores were compared across 
models, where the lowest score indicates the least predictive loss (i.e., accurately predicts data points 
not included in the model) and the best model for prediction. 
 
Computation 

All analyses were conducted using the R statistical environment (R Core Development Team; 
2014). The indicator variable selection and cross validation methods were conducted using JAGS (Just 
Another Gibbs Sampler; Plummer 2013) using the R package “rjags” (Plummer 2014). JAGS is an 
implementation of the BUGS (Bayesian Inference Using Gibbs Sampling) language, which is a flexible and 
intuitive platform for specifying and fitting Bayesian hierarchical models. The DIC approach was 
conducted using the “dic.samples” function in the “rjags” package (Plummer 2014). Marginal posterior 
distributions were summarized as the mean and 95% credible intervals (i.e., 2.5 and 97.5 percentiles). 
Randomization procedures were conducted using original R code to randomly select individual posterior 
samples of SMSY for each stock as the response variable and the R package “MuMIn” (i.e., multi-model 
inference; Barton 2015) to conduct AIC model selection for all eight models for each randomized 
sample.   

 
RESULTS 

Convergence of all models fit with MCMC methods was confirmed by a Gelman-Rubin statistic 
for all estimated parameters of <1.1 (Gelman et al. 2004).   

 
Indicator Variable Selection  

In terms of which variables should be included in the model, drainage area received the most 
posterior support for inclusion in the model, followed by channel node density, and tributary node 
density received the least support (Table 2). Barberi and Berger (2004) suggested that variables with 
indicator parameter values of greater than 0.5 contain justifiable predictive information. Following this 
threshold, drainage area was the only habitat variable that can be reliably used for prediction.   

There was little supporting evidence for the inclusion of more than one predictor variable (Table 
4.03). The model that carried the most probability was the drainage area-only model, followed by the 
channel node density-only model. The intercept-only model carried more probability than any of the 
other five models, which suggested that the mean SMSY across all stocks was a better predictor of stock-
specific SMSY than the combinations of the habitat variables in these five lower models. Tributary node 
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density appeared in the worst four models, which indicated that it was a very poor predictor of SMSY for 
the stocks included in this analysis. These findings were further supported by the estimated effect size 
for each parameter and whether its credible interval included zero (Table 4). These effects were 
calculated from the posterior distribution of each parameter when the parameter was included to 
prevent the coefficient samples that did not influence the likelihood from affecting the posterior mean. 
Drainage area had the largest effect and it was the only parameter with a 95% credible interval that did 
not overlap zero. 

Since informative priors were used to aid the MCMC sampler, the influence of prior information 
was investigated graphically (Figure 4.02). It is clear that the seemingly informative prior (Table 1) was 
indeed flat over the range of the posterior density for each coefficient. All posterior samples where ω = 
0 were removed for this plot to assess the influence of the prior on the posterior since these were the 
only samples where the data influenced the posterior draw.   

Coefficients were combined using model averaging according to how often they were included 
in the model fitting and were used to make a predictive diagnostic plot (Figure 4.03). This is an 
“observed versus predicted” plot where points are pairs of model predictions (x-axis) and observed data 
points (y-axis). The dotted line is the 1:1 line where a model prediction is the exact same as the data. For 
stocks with low SMSY, the model performed well at predicting their value, but the stock with observed 
SMSY of approximately 80,000 was not predicted well by the model-averaged coefficients. This abnormal 
stock is the Kuskokwim River in western Alaska, and it seems that it requires more escaping fish to attain 
maximum sustainable yield than would be predicted by the habitat variables included in this model. 

 
Deviance Information Criterion 
  The DIC analysis showed that each of the models had pD within one parameter of one another 
(Table 3). In general, models with the same number of predictor variables had the same number of 
effective parameters (e.g., the area-only and the channel node density-only model had pD of 9.62 and 
9.63, respectively; Table 3). However, this was not always the case as the intercept-only model that 
contained no coefficients for habitat predictor variables and the full model that contained coefficients 
for all three habitat variables resulted in essentially the same pD (10.02 versus 10.03, respectively; Table 
3). This showed that in some cases the sampler was able to adequately estimate the number of free 
parameters, but that in other cases the number of free parameters changed in an unpredictable 
manner. 
 
Randomization with AIC Model Selection 

Drainage area and channel node density were supported by this randomization analysis, 
whereas tributary node density showed very little support, as it was in all four of the worst models 
(Tables 2, 3; Figure 4). Drainage area and channel node density were present in the best model in 71% 
and 27% of the randomized samples, respectively (Table 2). Tributary node density was present in the 
best model in only 2% of the samples. 

 
Leave-One-Out Cross Validation 
 In terms of predictive ability for data points left out of the model fitting, the drainage area-only 
model exhibited the lowest predictive loss and the additive area and channel node density had the next 
lowest loss (Table 3). The intercept-only model placed fifth in predictive loss, which indicated that there 
are combinations of variables that perform more poorly at out-of-sample prediction than simply the 
mean of the included stocks. This intercept-only model had approximately 50% more loss than the area-
only model. The worst two models, the full model and the additive channel node density and tributary 
node density model, each had 78% more predictive loss than the best model.    
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DISCUSSION 
Overall, the different model selection techniques agreed very well with regard to which 

variables have predictive credibility. All methods except DIC selected drainage area as the best predictor 
of SMSY, followed by channel node density. Tributary node density gained very little support under three 
out of the four methods (DIC disagreed), perhaps due to the lack of resolution in this variable (all stocks 
had approximately 0.1 tributaries/km2). Additionally, the same three out of the four methods favored 
selecting only one predictor for the best model, and this single predictor was drainage area. This finding 
lends more credibility to the Parken et al. (2006) model that considered only drainage area. DIC showed 
little to no separation between models, making inference based its findings very difficult. 

The model weight column of Table 3 (randomization method) is analogous in interpretation to 
the model probabilities shown in the first column (variable indicator method) because the AIC model 
weight is defined as the probability that the model is the best, among those selected for analysis. This 
definition is equivalent to the model probability presented in Table 3. Upon comparison of these two 
findings, it is clear that the two methods give very similar results. All models carried approximately the 
same weight under both approaches, with the primary difference being that the intercept-only model 
placed third best under the Bayesian indicator selection and fourth best in the randomization.  

Based on this consistent agreement with the randomization approach, it seems that the 
Bayesian indicator variable approach is an adequate technique for model selection for this hierarchical 
model. However, the indicator variable technique only returned these results when the specific prior in 
Table 1 was used for the coefficients. When the prior was made more diffuse in preliminary runs of the 
analysis, the indicator variables tended to select the intercept-only model as the best, and with high 
certainty (approximately 0.8 probability). This was likely due to the MCMC sampler “getting lost” as 
previously mentioned. So while the Bayesian model selection technique did return very similar inference 
to the more frequentist method, its findings were contingent on the prior specification, which warrants 
some caution. As there is no objective way to decide how informative of a prior one should use to 
correct the “getting lost” problem, it is possible that two investigators would come to very different 
conclusions using these same data. This discrepancy is potentially due to two linked mechanisms: (1) the 
small sample size and (2) the hierarchical incorporation of uncertainty in the response variable. Including 
the uncertainty in the response variable required more parameters and placed a high demand of the 
small number of stocks used. There were 11 stocks used to fit the variable indicator model, and each 
had a mean SMSY and an inverse variance that were provided to the model as data, which lead to a total 
of 22 pieces of information used by the model (ignoring priors). If the effective number of parameters 
returned by the DIC analyses would be trusted, then the model had approximately 10 free parameters, 
which means that there were approximately two pieces of information for every free parameter.  This 
information-to-parameter ratio puts this model on the fringes of over-parameterization. If it were 
possible to include more data points, it is possible that a more diffuse prior specification could be used 
on the coefficients. 

The hierarchical inclusion of posterior uncertainty in log(SMSY) from the Catalano (2012) analysis 
was effective at increasing the uncertainty in the area-log(SMSY) relationship. When a Bayesian 
hierarchical model with unstandardized area only and uninformative priors on the coefficients (mean = 
0, precision = 1E-8) was compared to a frequentist analysis that treated the log(SMSY) as known 
quantities, the estimates showed more uncertainty under the Bayesian analysis. The estimate of the 
area effect was 0.35 (0.08-0.61) under the Bayesian analysis and 0.35 (0.10-0.60) under the frequentist 
analysis. While these estimates and intervals are very similar, the residual standard error was greater 
under the Bayesian analysis (0.79) than under the frequentist analysis (0.72). This greater uncertainty in 
the area-log(SMSY) relationship is due to the inclusion of uncertainty in log(SMSY), however one could 
argue that the difference is not large enough to discredit treating log(SMSY) as known quantities under a 
frequentist analysis. 
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DIC proved ineffective at distinguishing between models, and thus inference based on its results should 
be done so carefully. The full model included three more coefficients than the intercept-only model, 
however the DIC model selection indicated that there was no difference in the effective number of 
parameters between these models. This was an unexpected finding, but one can speculate as to why 
this was the case. The model used a linear predictor to make the mean prediction for each stock based 
on habitat variables (μi), then sampled a latent state variable (ψi) from a distribution with the linear 
prediction (μi) as the mean and a common process error (τψ). These latent states were then fit to the 
mean log(SMSY) and their variances from Catalano (2012) in the likelihood. When there were predictor 
variables included in the model, there was information about the values of the latent states contained in 
the linear predictor. Conversely, when only the intercept was used as the linear predictor, the only 
information about the latent states was the mean log(SMSY) across all stocks. In the latter case, the latent 
states were more “free” as they were less informed by habitat data and thus could have resulted in a 
similar pD as the full model. While this is explanation is purely speculation, one could see how this might 
play out within the model fitting. Regardless of the cause the lack of model separation in the DIC 
analysis, its nature renders inference based on this method regarding the best predictor variables highly 
uncertain and essentially impossible.  

Furthermore, Plummer (2008) noted that DIC is only useful for models in which the ratio of data 
points to parameters is large. If this is not the case, then more complex models will be underpenalized 
(Plummer 2008). Although Plummer (2008) never defined what “large” means for this ratio, certainly 
the ratio in the present analysis was small. There was a total of 11 stocks used in this analysis (Figure 
4.01) and the model used latent variables for each stock, plus coefficients for the habitat predictors, and 
a common precision parameter for the latent variable sampling distributions. This is another potential 
cause for the DIC model selection results lacking differentiation between models.  

It is worth noting that while the results of these model selection exercises gave credence to 
Parken et al.’s (2006) choice of drainage area as the sole predictor of SMSY, the coefficients from the 
present analysis are not directly comparable to this previous study. Parken et al. (2006) censored 
drainage area based on accessible habitat: that area of the drainage that feeds the stream below natural 
and man-made barriers. Drainage area used in the present study was not censored using this criterion. 
Thus, one unit of area in the Parken et al. (2006) approach can support more spawners than one unit of 
area in the present study. This statement agrees with the coefficient estimates from both studies: 
Parken et al. (2006) reported an effect size of 0.69/km2 whereas a model using only unstandardized 
drainage area under the present study estimated an effect size of 0.35/km2. It could be argued that not 
censoring area based on accessible habitat makes the model more straight-forward to implement for 
managers, but it also may introduce an additional source of variation into the model. 
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Table 1. Prior distributions for all unknown parameters in the Bayesian hierarchical regression models. 
ω1:3 were only included in the variable indicator selection method. Note that the dispersion parameter 
of the normal distribution is the precision (as opposed to variance) which is the inverse of variance. 

  
Parameter Prior Distribution 

β0:3 N(0, 0.1) 
τψ Gamma(0.01, 0.01) 

ω1:3 Bernoulli(0.5) 
 

Table 2. Parameter inclusion probability from the indicator variable selection method (labeled Bayes) 
and the proportion of randomized samples that resulted in each variable being selected in the best 
model (labeled AIC). A = log(area), C = channel node density, T = tributary node density. 

   

Variable 
(Bayes) 

Inclusion 
Parameter (ω) 

(AIC) Proportion 
In best model 

A 0.56 0.71 
C 0.36 0.27 
T 0.15 0.02 

 
Table 3. Results from the four model selection approaches. Models are ordered by the strength of 
support under the variable indicator selection method (first column). Bolded values are the selected 
best model under each approach. The values in the parentheses in the Randomize w/AIC column are the 
standard deviation of the placement and weight across all randomized posterior samples. 

 
  

 Variable Ind.  DIC  Randomize w/AIC  Cross-Validation 

Model 
Model 

Probability  pD DIC  
Model 

Position 
Model 
Weight  Score 

% Change from 
Best Model 

A 0.37  9.62 11.77  1.48 (0.78) 0.37 (0.14)  9.23 0% 
C 0.19  9.63 11.52  2.33 (1.02) 0.23 (0.12)  12.17 32% 
0  0.16  10.01 12.61  4.03 (1.42) 0.11 (0.10)  13.75 49% 

AC 0.13  9.59 11.64  3.27 (1.37) 0.16 (0.10)  12.01 30% 
T 0.06  10.06 12.25  4.80 (1.33) 0.07 (0.07)  14.40 56% 

AT 0.04  9.88 12.19  5.90 (1.11) 0.03 (0.01)  13.13 42% 
CT 0.03  9.62 11.62  6.29 (0.96) 0.03 (0.02)  16.40 78% 

ACT 0.02  10.03 12.31  7.91 (0.45) 0.01 (0.01)  16.39 78% 
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Table 4 Coefficient estimates from the variable indictor selection method after samples where ω = 0.  
Values in parentheses indicate the 95% credible interval of these thinned posteriors. 
  

Variable Mean 
(95% CI) 

A 0.69 
(0.07, 1.27) 

C 0.56 
(-0.07, 1.19) 

T 0.28 
(-0.62, 1.11) 
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Figure 1. Distribution of stocks included in this analysis.  
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Figure 2. Posterior distribution for each slope coefficient after iterations where the corresponding 
indicator variable was turned off (solid line) were excluded and the prior shown in Table 1 (dashed line). 
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Figure 3. Observed vs. predicted plot for each of the 11 stocks included in the variable indicator 
selection method. Observed data points are the posterior means presented in Catalano (2012) and 
predictions were made using model-averaged coefficients from the variable indicator selection. Error 
bars in the vertical direction are 95% Bayesian credible intervals from the Catalano (2012) analysis and 
credible intervals for the model predicted SMSY from the variable indicator model. 
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Figure 4. Distributions of model selection outcomes from the randomization procedures. Bar height 
represents the proportion of randomized posterior samples that each model showed up in each model 
placement. Divided into two panels for ease of presentation. 
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APPENDIX A: DATA 
Table A1: Habitat variables before standardizing. 

Stock A T C 
Alsek 10.31497 0.012856 0.007819 
Anchor 6.331502 0.010676 0.007117 
Chena+Salcha 9.304283 0.013382 0.019663 
Deshka 7.407328 0.012743 0.027306 
Goodnews 7.882315 0.012453 0.053962 
Karluk 6.43935 0.011182 0.015974 
Kuskokwim 11.6786 0.013218 0.067099 
Stikine 10.82146 0.013238 0.044405 
Taku 9.777868 0.013039 0.049606 
Unalakleet 8.574329 0.013034 0.022667 
Yukon 12.56375 0.012629 0.034927 
 
Table A2: log(SMSY) posterior summaries; used in DIC and indicator variable selection methods (note: SD 
was transformed to be an inverse variance for JAGS) 

Stock Mean SD 
Alsek 8.309908 0.277004 
Anchor 8.411187 0.455808 
Chena+Salcha 9.038798 0.107132 
Deshka 9.351489 0.17418 
Goodnews 8.168945 0.183109 
Karluk 8.409064 0.617513 
Kuskokwim 11.29503 0.257912 
Stikine 9.743034 0.163446 
Taku 10.23734 0.250491 
Unalakleet 9.107516 1.104626 
Yukon 10.33829 0.210793 
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APPENDIX B. CODE FOR VARIABLE SELECTION TECHNIQUES 
 
# PACKAGES 
library(R2OpenBUGS) 
library(rjags) 
source("C:/Users/bas0041/Desktop/run_functions_source.R") 
main.dir=getwd() 
 
# RESPONSE VARIABLES: REFERENCE POINTS 
col = c("mean", "sd", "median", "lower95", "upper95") 
log.S.msy = read.csv(paste(main.dir, "log_Smsy.csv", sep="/"), row.names=1) 
colnames(log.S.msy)=col 
 
# PREDICTOR VARIABLES: HABITAT VARIABLES 
habitat = read.csv(paste(main.dir, "habitat_vars.csv", sep="/"), row.names=1) 
 
#pullout only stocks we can use 
no.na = which((!is.na(habitat$WS_A_KM2) & !is.na(habitat$MCND_NUM)) 
tribs.nat = habitat$TND_NUM/habitat$WS_A_KM2 
chans.nat = habitat$MCND_NUM/habitat$WS_A_KM2 
 
# habitat variables 
habitat.vars = data.frame(area = log(habitat$WS_A_KM2),tribs =  tribs.nat, chans = chans.nat) 
habitat.vars = habitat.vars[no.na,] 
rownames(habitat.vars) = rownames(habitat)[no.na] 
 
# reference points: use posterior means 
log.S.msy.mean = log.S.msy[no.na, 1] 
log.S.msy.tau = 1/(log.S.msy[no.na, 2])^2 
 
dat = list( 
  #dependent variables 
  obs.mu = log.S.msy.mean, 
  obs.tau = log.S.msy.tau, 
  n.stocks = length(log.S.msy.mean), 
   
  #independent variables 
  area = as.numeric(scale(habitat.vars$area)), 
  trib_nodes = as.numeric(scale(habitat.vars$tribs)), 
  chan_nodes = as.numeric(scale(habitat.vars$chans))) 
 
windows(record=T) 
for(i in 4:6){ 
  plot(dat$obs.mu~dat[[i]], main=names(dat)[i]) 
} 
 
### SPECIFY MODEL ### 
mod=function(){ 
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  #PRIORS 
  for(i in 1:3){ 
    beta[i] ~ dnorm(0, 0.1) 
    w[i] ~ dbern(0.5) 
  } 
  int ~ dnorm(0, 0.1) 
  tau.proc ~ dgamma(0.01, 0.01) 
   
  for(i in 1:n.stocks){ 
    obs.mu[i] ~ dnorm(ref.proc[i], obs.tau[i]) 
    ref.proc[i] ~ dnorm(pred.ref[i], tau.proc) 
     
    pred.ref[i] <- int + w[1]*beta[1]*area[i] + w[2]*beta[2]*trib_nodes[i] + w[3]*beta[3]*chan_nodes[i] 
     
    #derived quantities 
    resid.pred[i] <- obs.mu[i]-pred.ref[i] 
    resid.proc[i] <- obs.mu[i]-ref.proc[i] 
  } 
  sigma.proc <- 1/sqrt(tau.proc) 
} 
 
# WRITE MODEL TO A TXT FILE 
model.file = "param_inclus.txt" 
write.model(mod,paste(main.dir, model.file, sep="/")) 
 
### PARAMETERS TO MONITOR ### 
parameters = c( 
  #parameters 
  "beta", "w", "tau.proc", "ref.proc", "int", 
  #calculated quantities 
  "sigma.proc", "pred.ref", "resid.pred", "resid.proc") 
 
# RUN FREQUENTIST MODEL TO GET INITIAL VALUES FOR PARAMETERS 
freq.mod = lm(obs.mu~area+trib_nodes+chan_nodes, data = dat) 
full = summary(freq.mod) 
freq.coef = coef(full)[,1] 
freq.sigma = full$sigma 
 
# COMPILE INITS 
inits1 = list(int=freq.coef[1], beta=freq.coef[2:4], w=rep(1, 3), tau.proc=1/freq.sigma^2) 
inits2 =list(int=freq.coef[1]*runif(1), beta=freq.coef[2:4]*runif(1), w=rep(0, 3), 
tau.proc=(1/freq.sigma^2)*runif(1)) 
 
inits = list(inits1, inits2) 
 
# MCMC SPECIFICATIONS 
nc = 2 
ni = 100000 
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nb = 50000 
nt = 20 
ni/nt 
 
### RUN JAGS ### 
 
# INITITATE THE MODEL (ADAPTING PHASE) 
jmod = jags.model(file=paste(main.dir, model.file, sep="/"), data=dat, n.chains=nc, inits=inits, 
n.adapt=1000) 
 
# BURNIN  
update(jmod, n.iter=nb, by=1, progress.bar='text') 
 
# SAMPLE THE POSTERIOR 
post = coda.samples(jmod, parameters, n.iter=ni, thin=nt)  
 
#### LOOK AT OUTPUT #### 
gelman.diag(post, multivariate=F) 
 
# COERCE TO MATRIX AND PULL OUT POSTERIORS OF INTEREST 
mypost = as.matrix(post) 
w = mypost[, c("w[1]", "w[2]", "w[3]")] 
beta = mypost[,c("beta[1]", "beta[2]", "beta[3]")] 
 
# remove w == 0 from betas 
beta1 = beta[w[,1] == 1 ,1] 
beta2 = beta[w[,2] == 1 ,2] 
beta3 = beta[w[,3] == 1 ,3] 
 
summ = function(x){c(mean = mean(x), quantile(x, c(0.025, 0.975)))} 
 
eff = rbind(summ(beta1), summ(beta3), summ(beta2)) 
rownames(eff) = c("A", "C", "T") 
#write.csv(eff, "effectsizes.csv") 
 
### MODEL PROBABILITITES ### 
models = as.matrix(table(paste(w[,1],w[,2], w[,3], sep="")))/dim(w)[[1]] 
modprobs = as.matrix(as.matrix(models[order(models[,1],decreasing = T),])) 
round(modprobs, 2) 
 
# MODEL AVERAGED COEFFNS 
parmas = beta*w 
results = t(rbind(mean=colMeans(parmas), 
                  sd=apply(parmas,2,sd), 
                  apply(parmas,2,quantile,c(0.025,0.5, 0.975)), 
                  inclusion_probs=colMeans(w))) 
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###### END PARAMETER INCLUSION PROBS ##### 
 
 
 
#####################################################################################
# 
################# RANDOMIZATION OF POSTERIOR SAMPLES W/AIC SELECTION 
################# 
#####################################################################################
# 
 
# PACKAGES 
library(MuMIn) 
library(pbapply) 
 
main.dir=getwd() 
 
# READ IN THE POSTERIOR SAMPLES 
post.samp=read.csv("log.S.msy.post.csv") 
 
# PREDICTOR VARIABLES: HABITAT VARIABLES 
habitat = read.csv(paste(main.dir, "habitat_vars.csv", sep="/"), row.names=1) 
 
#pullout only stocks we can use 
no.na = which((!is.na(habitat$WS_A_KM2) & !is.na(habitat$MCND_NUM)))# & 
rownames(habitat)!="kuskokwim") 
 
tribs.nat = habitat$TND_NUM/habitat$WS_A_KM2 
chans.nat = habitat$MCND_NUM/habitat$WS_A_KM2 
 
#habitat variables 
habitat.vars = data.frame(area = log(habitat$WS_A_KM2),tribs =  tribs.nat, chans = chans.nat) 
habitat.vars = habitat.vars[no.na,] 
rownames(habitat.vars) = rownames(habitat)[no.na] 
 
use.stocks=rownames(habitat.vars) 
use.stocks[length(use.stocks)]="yukon" 
 
#pull out only those stocks' posteriors 
post.samp=post.samp[,use.stocks] 
colnames(post.samp) 
 
# RANDOMIZE THE POSTERIORS FOR EACH STOCK 
n.samp=nrow(post.samp) 
post.samp=as.matrix(post.samp) 
sub.samp=apply(post.samp, 2, function(x) sample(x, n.samp, replace=F)) 
models = c("null", "area", "chans", "area.chans", "tribs", "area.tribs", "chans.tribs", "full") 
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n.pulls = n.samp 
do.plot = F 
 
# CONTAINERS FOR RANDOMIZED RESULTS 
boot.results = list() 
null.pos  = numeric(n.pulls) 
null.wt  = numeric(n.pulls) 
area.pos = numeric(n.pulls) 
area.wt = numeric(n.pulls) 
chans.pos = numeric(n.pulls) 
chans.wt = numeric(n.pulls) 
area.chans.pos = numeric(n.pulls) 
area.chans.wt = numeric(n.pulls) 
tribs.pos = numeric(n.pulls) 
tribs.wt = numeric(n.pulls) 
area.tribs.pos = numeric(n.pulls) 
area.tribs.wt = numeric(n.pulls) 
chans.tribs.pos = numeric(n.pulls) 
chans.tribs.wt = numeric(n.pulls) 
full.pos = numeric(n.pulls) 
full.wt = numeric(n.pulls) 
 
# INITIATE THE FITTING TO POSTERIOR SAMPLES 
pb = startpb(0, n.pulls) 
for(i in 1:n.pulls){ 
  Sys.sleep(0.1) 
   
  # make a new data set 
  dat = data.frame(area = as.numeric(scale(habitat.vars$area)), 
                   tribs = as.numeric(scale(habitat.vars$tribs)), 
                   chans = as.numeric(scale(habitat.vars$chans)), smsy = sub.samp[i,]) 
   
  if(i == 1 & do.plot == T) windows(record = T) 
  if(do.plot == T) { 
    par(mfrow = c(2,2), oma = c(0, 1, 2, 0), mar = c(2,2,2,2)) 
    plot(smsy ~ area, data = dat, main = "Area", xlab = "", ylab = "") 
    plot(smsy ~ chans, data = dat, main = "Chans",  xlab = "", ylab = "") 
    plot(smsy ~ tribs, data = dat, main = "Tribs",  xlab = "", ylab = "") 
    mtext(side = 3, outer = 2, as.character(i), cex = 2, line = 0, font = 2) 
    plot.new() 
  } 
  # fit all models 
  fit = lm(smsy ~ area + chans + tribs, data = dat, na.action = na.fail) 
   
  dd = dredge(fit) 
   
  #combine important model selection 
  boot.results[[i]] = data.frame(model = models[as.numeric(rownames(dd))], weight = dd$weight) 
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  null.pos[i] = which(boot.results[[i]]$model == "null") 
  null.wt[i] = boot.results[[i]]$weight[null.pos[i]] 
   
  area.pos[i]= which(boot.results[[i]]$model == "area") 
  area.wt[i] = boot.results[[i]]$weight[area.pos[i]] 
   
  chans.pos[i]= which(boot.results[[i]]$model == "chans") 
  chans.wt[i] = boot.results[[i]]$weight[chans.pos[i]] 
   
  area.chans.pos[i]= which(boot.results[[i]]$model == "area.chans") 
  area.chans.wt[i] = boot.results[[i]]$weight[area.chans.pos[i]] 
   
  tribs.pos[i] = which(boot.results[[i]]$model == "tribs") 
  tribs.wt[i] = boot.results[[i]]$weight[tribs.pos[i]] 
   
  area.tribs.pos[i] = which(boot.results[[i]]$model == "area.tribs") 
  area.tribs.wt[i] = boot.results[[i]]$weight[area.tribs.pos[i]] 
   
  chans.tribs.pos[i] = which(boot.results[[i]]$model == "chans.tribs") 
  chans.tribs.wt[i] = boot.results[[i]]$weight[chans.tribs.pos[i]] 
   
  full.pos[i] = which(boot.results[[i]]$model == "full") 
  full.wt[i] = boot.results[[i]]$weight[full.pos[i]] 
  setpb(pb,i) 
} 
 
# close the progress bar 
closepb(pb) 
 
# COMBINE RAW OUTPUT 
positions = data.frame(null = null.pos, area = area.pos, chans = chans.pos, area.chans = area.chans.pos,  
           tribs = tribs.pos, area.tribs = area.tribs.pos, chans.tribs = chans.tribs.pos, full = full.pos) 
weights = round(data.frame(null = null.wt, area = area.wt, chans = chans.wt, area.chans = area.chans.wt,  
                     tribs = tribs.wt, area.tribs = area.tribs.wt, chans.tribs = chans.tribs.wt, full = full.wt),2) 
 
# SUMMARIZE RAW OUTPUT 
positions.mean = sort(apply(positions, 2, mean)) 
positions.sd = apply(positions, 2, sd)[names(positions.mean)] 
 
weights.mean = sort(apply(weights, 2, mean), decreasing = T) 
weights.sd = apply(weights, 2, sd)[names(weights.mean)] 
 
short.models = c("0", "A", "C", "AC", "T", "AT", "CT", "ACT") 
 
names(short.models) = models 
 
# PLOT MEAN MODEL POSTION AND WEIGHT 
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windows() 
par(mfrow = c(2,1), mar = c(3, 3, 2, 2)) 
mp.1 = barplot(positions.mean, names.arg = short.models[names(positions.mean)], main = "Mean 
Model Position", col = "white", 
               ylim = c(0, max(positions.mean + positions.sd) + 1), las = 1) 
arrows(mp.1, positions.mean - positions.sd, mp.1, positions.mean + positions.sd, code = 3, length = 0.05, 
angle = 90) 
axis(side = 1, at = mp.1, labels = rep("", length(models))) 
box() 
 
mp.2 = barplot(weights.mean, names.arg = short.models[names(weights.mean)], main = "Mean Model 
Weight", col = "white",  
               ylim = c(0, max(weights.mean + weights.sd) + 0.1), las = 1) 
axis(side = 1, at = mp.2, labels = rep("", length(models))) 
arrows(mp.2, weights.mean - weights.sd, mp.2, weights.mean + weights.sd, code = 3, length = 0.05, 
angle = 90) 
box() 
 
# PULL OUT DISTRIBUTION OF MODEL PLACEMENT 
pos.count = apply(positions, 2, function(x) table(x)) 
count.mat = matrix(NA, nrow = 8, ncol = 8) 
colnames(count.mat) = as.character(1:8) 
rownames(count.mat) = models 
 
for(i in 1:length(models)){ 
  count.mat[models[i], as.character(names(pos.count[[i]]))] = pos.count[[i]] 
} 
 
count.mat[is.na(count.mat)] = 0 
prop.mat = count.mat/n.samp 
best = prop.mat[c("area", "chans", "area.chans", "null"),] 
worst = prop.mat[c("tribs", "area.tribs", "chans.tribs", "full"),] 
 
# PLOT DISTRIBUTIONS OF MODEL PLACEMENT 
windows() 
par(mfrow = c(2,1), mar = c(2,2,3,2), oma = c(3,3,0,0)) 
barplot(best, beside = T, col = c("black", "grey40", "grey80", "white"),cex.lab = 1.5, cex.main = 2, ylim = 
c(0, 1),las = 1, main = "4 Best Models", xlab = "", ylab = "Frequency") 
axis(side = 1, at = seq(3, 40, by = 5), labels = rep("", 8)) 
legend("topright", legend = short.models[rownames(best)], fill = c("black", "grey40", "grey80", "white"), 
bty = "n") 
 
barplot(worst, beside = T, col = c("black", "grey40", "grey80", "white"), cex.lab = 1.5, cex.main = 2, ylim = 
c(0, 1), las = 1,main = "4 Worst Models", xlab = "", ylab = "") 
axis(side = 1, at = seq(3, 40, by = 5), labels = rep("", 8)) 
legend("topleft", legend = short.models[rownames(worst)], fill = c("black", "grey40", "grey80", "white"), 
bty = "n") 
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mtext(side = 1, outer = T, "Model Position", cex = 1.5, line = 0.6) 
mtext(side = 2, outer = T, "Proportion of Samples", cex = 1.5, line = 1) 
 
# NUMBER OF TIMES EACH VARIABLE SHOWED UP IN THE BEST MODEL 
area = sum(count.mat[c("area", "area.chans", "area.tribs", "full"), 1]) 
chans = sum(count.mat[c("chans", "area.chans", "chans.tribs", "full"), 1]) 
tribs = sum(count.mat[c("tribs", "area.tribs", "chans.tribs", "full"), 1]) 
null = sum(count.mat["null",1]) 
tot = sum(area, chans, tribs) 
param.inclus = round(t(data.frame(area = area/tot, chans = chans/tot, tribs = tribs/tot)),2) 
 
##### END RANDOMIZATION CODE ##### 
 
 
 
 
 
 
 
 
 
 
 
 
 
#####################################################################################
# 
############################# LEAVE-ONE-OUT CROSS VALIDATION 
######################### 
#####################################################################################
# 
 
##### LOAD PACKAGES AND MY FUNCTIONS ##### 
library(R2OpenBUGS) 
library(rjags) 
source("C:/Users/bas0041/Desktop/run_functions_source.R") 
 
main.dir=getwd() 
 
##### GET RAW DATA READ IN AND FORMATED ##### 
 
# RESPONSE VARIABLES: REFERENCE POINTS 
col = c("mean", "sd", "median", "lower95", "upper95") 
 
# log of ref. posteriors with the negatives removed 
log.S.msy = read.csv(paste(main.dir, "log_Smsy.csv", sep="/"), row.names=1); colnames(log.S.msy)=col 
 
# PREDICTOR VARIABLES: HABITAT VARIABLES 
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habitat = read.csv(paste(main.dir, "habitat_vars.csv", sep="/"), row.names=1) 
 
#pullout only stocks we can use 
no.na = which((!is.na(habitat$WS_A_KM2) & !is.na(habitat$MCND_NUM)))# & 
rownames(habitat)!="kuskokwim") 
 
tribs.nat = habitat$TND_NUM/habitat$WS_A_KM2 
chans.nat = habitat$MCND_NUM/habitat$WS_A_KM2 
 
#habitat variables 
habitat.vars = data.frame(area = log(habitat$WS_A_KM2),tribs =  tribs.nat, chans = chans.nat) 
habitat.vars = habitat.vars[no.na,] 
rownames(habitat.vars) = rownames(habitat)[no.na] 
 
#reference points: use posterior means 
log.S.msy.mean = log.S.msy[no.na, 1] 
log.S.msy.tau = 1/(log.S.msy[no.na, 2])^2 
 
area = as.numeric(scale(habitat.vars$area)) 
trib = as.numeric(scale(habitat.vars$tribs)) 
chan = as.numeric(scale(habitat.vars$chans)) 
 
##### SPECIFY MODEL ##### 
mod=function(){ 
  #PRIORS 
  for(i in 1:nvars){ 
    beta[i] ~ dnorm(0, 0.1) 
  } 
  #int ~ dnorm(0, 0.1) 
  tau.proc ~ dgamma(0.01, 0.01) 
   
  for(i in 1:n.stocks){ 
    obs.mu[i] ~ dnorm(ref.proc[i], obs.tau[i]) 
    ref.proc[i] ~ dnorm(pred.ref[i], tau.proc) 
     
    pred.ref[i] <- sum(beta * X[i,]) 
     
    #derived quantities 
    resid.pred[i] <- obs.mu[i] - pred.ref[i] 
    resid.proc[i] <- obs.mu[i] - ref.proc[i] 
  } 
  sigma.proc <- 1/sqrt(tau.proc) 
} 
 
model.file = "model.txt" 
write.model(mod,paste(main.dir, model.file, sep="/")) 
 
##### PARAMETERS TO MONITOR ###### 
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parameters = c( 
  #parameters 
  "beta", "tau.proc", "ref.proc", 
  #calculated quantities 
  "sigma.proc", "pred.ref", "resid.pred", "resid.proc") 
 
##### MCMC SPECIFICATIONS ##### 
nc = 2 
ni = 100000 
nb = 50000 
nt = 20 
ni/nt 
n.saved = (ni * nc)/nt 
 
##### MAKING DATA FOR EACH MODEL AND FOR EACH LEAVE ONE OUT RUN ##### 
# habitat data 
K = 11 
n.stocks = 10 
int = rep(1,n.stocks) 
hab = list() 
for(k in 1:K){ 
  hab[[k]] = list(mod1 = cbind(int, area[-k]), mod2 = cbind(int, trib[-k]), mod3 = cbind(int, chan[-k]), 
                  mod4 = cbind(int, area[-k], trib[-k]), mod5 = cbind(int, area[-k], chan[-k]), 
                  mod6 = cbind(int, trib[-k], chan[-k]), mod7 = cbind(int, area[-k], trib[-k], chan[-k]),  
                  mod8 = cbind(int)) 
} 
 
# reference points 
ref = list() 
for(k in 1:K){ 
  ref[[k]] = list(obs.mu = log.S.msy.mean[-k], obs.tau = log.S.msy.tau[-k]) 
} 
 
# number of predictors for each model 
n.vars = c(2,2,2,3,3,3,4,1) 
 
##### RUN ALL 8 MODELS OVER ALL 11 COMBINATIONS OF THE LEAVE-ONE-OUT ##### 
n.models = 8 
beta = list() 
tau.proc = list() 
starttime = Sys.time() 
# i models 
# k datasets 
for(i in 1:n.models){ 
  beta[[i]] = list() 
  tau.proc[[i]] = list() 
  for(k in 1:K){ 
    ### SET UP DATA ### 
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    dat = list( 
      obs.mu = ref[[k]]$obs.mu, 
      obs.tau = ref[[k]]$obs.tau, 
      n.stocks = n.stocks, 
      nvars = n.vars[i], 
       
      X = matrix(unlist(hab[[k]][i]), nrow = 10, ncol = n.vars[i]) 
      ) 
     
    ### RUN JAGS ### 
    print(paste("Model", as.character(i), "running with stock", as.character(k), "removed")) 
    jmod = jags.model(file=paste(main.dir, model.file, sep="/"), data=dat, n.chains=nc, inits=NULL, 
n.adapt=1000, quiet = T) 
    update(jmod, n.iter=nb, by=1, progress.bar='text') 
    post = coda.samples(jmod, parameters, n.iter=ni, thin=nt)  
     
    ### PULL OUT OUTPUT ### 
    if(i == 8) beta.name = "beta" else beta.name = "beta[" 
    beta[[i]][[k]] = get.post(post, beta.name, do.post = T)$posterior 
    tau.proc[[i]][[k]] = get.post(post, "tau.proc", do.post = T)$posterior 
  } 
} 
Sys.time() - starttime 
 
##### CALCULATE THE SCORE FROM HOOTEN AND HOBBS (2015) ##### 
# get the habitat variables with all data 
n.stocks.full = 11 
int.full = rep(1,n.stocks.full) 
hab.full = list(mod1 = cbind(int.full, area), mod2 = cbind(int.full, trib), mod3 = cbind(int.full, chan), 
                  mod4 = cbind(int.full, area, trib), mod5 = cbind(int.full, area, chan), 
                  mod6 = cbind(int.full, trib, chan), mod7 = cbind(int.full, area, trib, chan),  
                  mod8 = cbind(int.full)) 
 
# get the reference points with all data 
ref.full = log.S.msy.mean 
 
 
# calculate model predicted S.msy for the left out stock under each model 
y.minus.k = list() 
for(i in 1:n.models){ 
  y.minus.k[[i]] = list() 
  for(k in 1:K){ 
    y.minus.k[[i]][[k]] = numeric(n.saved) 
    for(t in 1:n.saved){ 
      if(any(i == 1:7)){ 
        y.minus.k[[i]][[k]][t] = sum(beta[[i]][[k]][t,] * hab.full[[i]][k,]) 
      } 
      if(i == 8){ 
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        y.minus.k[[i]][[k]][t] = sum(beta[[i]][[k]][t] * hab.full[[i]][k,]) 
      } 
    } 
  } 
} 
 
# use sum of squared residual as the measure of statistical "closeness" 
score.i.k = list() 
for(i in 1:n.models){ 
  score.i.k[[i]] = numeric(11) 
  for(k in 1:K){ 
    score.i.k[[i]][k] = sum((ref.full[k] - y.minus.k[[i]][[k]])^2)/n.saved 
  } 
} 
 
##### INFERENCE ##### 
scores = unlist(lapply(score.i.k, sum)) 
model.names = c("A", "T", "C", "AT", "AC", "CT", "ACT", "0") 
names(scores) = model.names 
 
sorted = round(sort(scores),2) 
best = min(sorted) 
 
pct.chng = round((sorted - best)/best,2) 
 
##### END LEAVE-ONE-OUT CROSS VALIDATION CODE ##### 
 


