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ABSTRACT 

A central problem in understanding how species respond to global change is in parsing the 

effects of local drivers of population dynamics from regional and global drivers that are shared 

among populations. Management and conservation efforts that typically focus on a particular 

population would benefit greatly from being able to separate the effects of environmental 

processes at local, regional and global scales. One way of addressing this challenge is to 

integrate data across multiple populations and use multivariate time series approaches to estimate 

shared and independent components of dynamics among neighboring populations. Here, we use 

a dataset of 15 populations of Chinook salmon (Oncorhynchus tshawytscha) covering a broad 

geographical range in the eastern North Pacific Ocean to show how Dynamic Factor Analysis 

(DFA) can be used to estimate temporal coherence in population dynamics and to detect 

environmental drivers across spatial scales. Our results show that productivity dynamics of 

Chinook salmon populations strongly covary at the regional scale, but to a lesser degree at larger 

spatial scales. The timing of river ice break-up in spring was identified as an important driver of 

regional productivity dynamics. In addition, broad-scale variability in population productivity 

was linked to the North Pacific Gyre Oscillation (NPGO), a dominant pattern of sea surface 

height variability. These broad-scale patterns in productivity dynamics may be associated with 

recent regime shifts in the Northeast Pacific Ocean. However, our results also demonstrate that 

populations within regions do not always respond consistently to the same environmental 

drivers, thus suggesting location-specific impacts. Overall, this study illustrates the use of DFA 

for quantifying the spatial and temporal complexity of multiple population responses to 

environmental change, thereby providing insights to processes that affect populations across 

large geographic areas, but that might be filtered by local habitat conditions.  
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INTRODUCTION  

A central problem in understanding how species respond to global change is separating the local 

drivers that act independently on each population from the regional and global drivers that are 

shared among populations. Local environmental effects on population dynamics may result from 

changes in unique ecological conditions at a given location, or through filtering of regional 

environmental forcing through local habitat conditions (Hilborn et al. 2003, Rogers and 

Schindler 2011). Management and conservation focused on a particular population would benefit 

greatly from being able to isolate the effects of local conditions on population dynamics from 

those occurring at regional and global scales.  

Population-level responses to environmental variation are integrated over space and time 

because the conditions experienced by an organism change due to ontogenetic development and 

shifts in habitat use. Migratory organisms are particularly prone to these effects (Runge et al. 

2014, Jenni and Kéry 2003). For instance, in anadromous fishes, eggs and juveniles experience 

freshwater conditions specific to their natal stream, while adults are exposed to large-scale 

climate conditions in the ocean (Quinn 2005). In addition, life history, habitat variation, and 

limitations to dispersal interact to create spatial structure within species and populations (Levin 

1992). Multiple populations of the same species thus experience environmental conditions that 

may or may not be shared, and may therefore respond differently to environmental change 

(Hilborn et al. 2003). Inferring environmental impacts and coherence in population responses 

from multiple population time series thus poses the challenge of accounting for the complex 

spatial, temporal, and organizational dependencies associated with ecological data, particularly 

when addressing issues related to climate change, harvesting, or species conservation.  
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One way of addressing this challenge is to use multivariate methods that reduce the 

dimensionality of the dataset under consideration to quantify dynamics that are shared among 

related time series. Although multivariate time series approaches have been widely used in 

finance for decades (Harvey 1989, Zuur et al. 2003a,b), their application to ecological time series 

is rare. Dynamic Factor Analysis (DFA) is a dimension reduction technique designed for 

multivariate time series analysis that has several advantages compared to ordination techniques 

such as Principal Component or Correspondence Analysis (Zuur et al. 2003a). DFA uses smooth 

trends, which are modeled as random walks and are shared among multiple observation time 

series, in order to detect spatial coherence between distinct populations or species. Further, 

covariates can easily be incorporated into the analysis, which allows characterizing the link 

between the populations and environmental factors as well as trends that are shared among 

populations but are not linked to known covariates. Finally, this framework can handle time 

series that vary in length or contain missing values, a challenge that ecologists commonly face 

when analyzing data that have been collected intermittently or by different research groups or 

management bodies.  

In this study, we analyzed a data set of 15 populations of Chinook salmon (Oncorhynchus 

tshawytscha) whose spawning locations span nearly one million square kilometers across Alaska 

(USA) and the Yukon Territory (Canada). Chinook salmon is a highly valued species of Pacific 

salmon, and is important to commercial, recreational and subsistence fisheries throughout the 

North Pacific (Heard et al. 2007). In Alaska, many of the geographically distinct populations 

have experienced declines in productivity over the most recent decade (ADFG 2012, 2013), 

whereas other species of Pacific salmon in the region have not followed this trend (Ruggerone et 

al. 2010). In Western Alaska, recent declines in run abundance have resulted in closures of 
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commercial fisheries and restrictions in subsistence harvests (JTC 2013, Schindler et al. 2013). 

This broad-scale pattern of declines in abundance suggests common causality, e.g. due to large-

scale climate variability. Here, we used DFA to characterize temporal and spatial patterns in the 

productivity of Chinook salmon populations across Alaskan rivers while controlling for impacts 

of freshwater and ocean conditions for which time series data exist. We subsequently examine 

the ability of the models to predict population productivity of Chinook salmon in these systems. 

METHODS 

Time series data 

Chinook salmon is an anadromous fish inhabiting the Subarctic North Pacific Ocean and 

adjacent freshwater habitats. Adults return to fresh water in summer and fall to breed in their 

natal streams and rivers; they die shortly after spawning. Their eggs incubate overwinter and 

juveniles emerge in spring. Most Alaskan populations have a “stream-type” life history and 

typically spend at least a full year feeding in freshwater before migrating out to sea where they 

remain for 1-6 years before returning to spawn (Gilbert 1912, ADFG 2013). Chinook salmon are 

targeted by commercial, recreational and subsistence fisheries, and are caught as bycatch in other 

commercial fisheries (Stram and Ianelli 2014).  

We used estimates of spawning escapement and subsequent recruits (catch + escapement) 

for 15 Chinook salmon populations with ocean entry locations throughout Alaska (Fig. 1), and 

calculated the natural logarithm of recruits per spawner as our index of population productivity 

(results when using residuals from a Ricker stock-recruitment fit as alternative productivity index 

are presented in the Appendix). The escapement and recruitment estimates derive from recent 

run reconstruction models (see Fleischmann et al. 2011, 2013), which were fit using a Bayesian 

state-space approach that simultaneously accounts for observation error and process noise. These 
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models were fit as follows: (1) recruitment is multiplied by estimated age-at-maturity parameters 

to predict age-specific abundances, which are fit to age composition data from the catch and 

escapement, (2) exploitation rates are estimated (e.g., based on mark-recapture data) to predict 

total harvest, which is then fit to observed harvest data (based on fishery trip reports and post-

season surveys), and (3) escapement is predicted based on harvest and total abundance and fit to 

in-river abundance indices from air surveys or direct weir/tower counts.  

Populations were clustered into three geographic areas based on the locations of the 

respective river mouths where smolts enter the ocean: Western Alaska (WAK), Southcentral 

Alaska (SCA), and Southeast Alaska (SEA). Western Alaska included the populations from the 

following rivers: Chena & Salcha (1986-2005), Goodnews (1981-2005), Kuskokwim (1976-

2005), Nushagak (1976-2005), Unalakleet (1985-2005), and the Canadian Yukon (1982-2005). 

Southcentral Alaska included the populations from the following rivers: Anchor (1977-2005), 

Ayakulik (1976-2005), Deshka (1979-2005), Karluk (1976-2005), and Nelson (1976-2005). 

Because of its location, we considered including Nelson into the Western Alaska region, but our 

results suggest stronger coherence in productivity dynamics with the Southcentral Alaska 

populations. Southeast Alaska included the populations from the following rivers: Alsek (1976-

2003), Situk (1982-2005), Stikine (1981-2005), and Taku (1976-2005).  

Environmental indicators 

We used a variety of indicators for environmental conditions experienced by Chinook salmon 

during the freshwater, estuarine and marine phases of their life cycle. Variables were lagged to 

correspond to the time period relative to the brood year when the environmental conditions that 

these indicators reflect were hypothesized to affect Chinook salmon survival. By using fixed 

lags, we assume that the life-history of the populations is characterized by a fixed age-structure 
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and that most individuals smolt at age 1 (e.g. a covariate with a time lag of 2 years is assumed to 

affect survival during the first year in the ocean). Because the model cannot handle missing data 

in the covariate time series (as opposed to missing data in the productivity time series data), we 

had to restrict our analysis to certain indicators, i.e. we eliminated some of the indicators that 

may be hypothesized to affect Chinook salmon productivity but had incomplete data. Data 

sources and lags considered for each indicator are provided in Table 2. 

Environmental conditions considered for the freshwater phase were river ice break-up 

dates in spring (ICE), which has been linked to smolt migration timing (e.g. sockeye salmon, 

Hartman et al. 1967), and summer air temperature (TEMP) as a proxy for river temperature, 

which is known to influence the growth and survival of Chinook salmon fry in fresh water 

(McCullough 1999, Crozier et al. 2010). A complete time series of ice-break-up dates covering 

the entire study period was taken at Dawson on the upper Yukon River. This time series was 

used as a regional proxy for ice break-up dates in other rivers, which tend to be strongly 

correlated even over large distances (Jensen et al. 2007). For instance, ice break-up dates at 

Dawson and Bethel on the lower Kuskokwim River, which are about 1200 km apart, have a 

Pearson correlation of >0.7 (Bieniek et al. 2011). Regional time series of air temperature were 

taken at Faro, Yukon Territory (WAK), Anchorage (SCA), and Juneau (SEA). We used 

indicators for which long-term time series exist as our proxy for freshwater conditions across 

multiple populations, because the approach taken here cannot accommodate stock-specific 

indicators. Covariates are treated the same across populations for which shared trends are 

estimated, but the effect sizes of the covariates are population-specific. 

Our ocean climate conditions were sea surface temperature (SST, winter/spring), sea 

level pressure (SLP, winter/spring), and a strong winds index (SWI) in the Bering Sea. Ocean 
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climate conditions may be especially important during the early marine phase of the salmon, i.e. 

during their first year at sea (Beamish and Mahnken 2001, Scheuerell et al. 2009, Wells et al. 

2008, Burke et al. 2013). Accordingly, SSTs for the three regions were calculated by averaging 

temperatures within the areas bounded by 57-64°N and 157-169°W for WAK, 56-61°N and 146-

157°W for SCA, and 54-60°N and 130-140°W for SEA, which were chosen to represent thermal 

conditions close to the stocks ocean-entry locations.  

We included several indices that characterize climatic conditions across large spatial 

scales in the North Pacific and may thus integrate fish population responses across a wide 

geographical range. We used annual and winter indices of the Pacific Decadal Oscillation 

(PDO), a dominant pattern of temperature variability that has been linked to variability in Pacific 

salmon abundance (Mantua et al. 2002), and the North Pacific Gyre Oscillation (NPGO), a 

dominant pattern of sea surface height variability (Di Lorenzo et al. 2008). We also used the 

North Pacific Index (NPI) and the Arctic Oscillation (AO), which describe broad-scale patterns 

of sea level pressure variation. 

We considered biotic indices of prey availability and competition, which also can be 

particularly important for salmon survival at sea (Beamish and Mahnken 2001). Specifically, we 

considered Kamchatka pink salmon (KAM) and walleye pollock biomass from the Bogoslof 

region in the Eastern Bering Sea (BOG). Older age-classes of Asian and North American salmon 

populations have overlapping distributions at sea and may compete for limited resources 

(Ruggerone et al. 2003), and Chinook salmon may prey upon or compete with walleye pollock 

(Davis et al. 2009). Finally, we used data on Russian Chinook catches (RUS) and the Bering Sea 

and Aleutian Islands (BSAI) Chinook bycatch, as these indices may reflect broad-scale changes 

in ecosystem dynamics that affect salmon survival. Changes in Russian catches may indicate 



 9

similar or inverse production dynamics of western and eastern Chinook populations in the North 

Pacific Ocean, whereas Chinook bycatch could either reflect changes in productivity, or 

negatively affect productivity by decreasing ocean survival in these populations. 

Data analysis 

Dynamic Factor Analysis (DFA) is a dimension reduction technique designed for multivariate 

time series analysis (Zuur et al. 2003a). The time series (ܡ) are modeled as a linear combination 

of shared hidden trends (ܠ), potential explanatory variables (܌), and observation errors (ܞ): 

୲ܡ ൌ ୲ܠ ܈ ൅ ୲܌ ۲ ൅ ,୲~MVNሺ0ܞ ୲, whereܞ  ሻ܀

Here, ܈ is a matrix of factor loadings on the hidden trends, and ۲ is a matrix containing 

regression coefficients of the covariate effects. This formulation of the observation equation 

assumes that the time series have a mean of zero (otherwise a level parameter is required), and 

that the errors are normally distributed (MVN: multivariate normal) with mean zero and 

variance-covariance matrix ܀. The hidden trends (ܠ) are modeled as random walk processes with 

a noise component (ܟ): 

୲ܠ ൌ ୲ିଵܠ ൅ ,୲~MVNሺ0ܟ ୲ , whereܟ ۷ሻ 

The process noise is assumed to be normally distributed with mean zero and variance-covariance 

matrix ۷, which is the identity matrix, i.e. the hidden trends are assumed to have a variance of 1 

and no covariance structure. These trends are the information shared by the response variables 

that are not explained by the covariates. The initial state vector is set to a mean of zero and a 

diagonal variance-covariance matrix (઩) with large variances: 

,଴~MVNሺ૙ܠ ઩ሻ 

Model parameters and states were estimated using the MARSS package (Holmes et al. 2012) in 

the programming environment R (R Development Core Team 2014).  
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We performed DFA analyses for Chinook salmon from the three regions: Western Alaska 

(6 populations), Southcentral Alaska (5 populations), and Southeast Alaska (4 populations). 

Populations within each region have ocean entry points in close geographic proximity (Fig. 1). In 

addition to the three regional models, we selected the most parsimonious model that included all 

15 Alaskan Chinook salmon populations (indicators specific to the Bering Sea were not 

included). A maximum number of three shared trends was tested. We further allowed a 

maximum of three covariates in any single model to reduce the total number of models to be fit 

(i.e. we tested models without covariates and models with one, two, and three covariates). We 

tested the following error structures (܀ matrix): different variances and no covariance (diagonal 

and unequal), shared variance but no covariance (diagonal and equal), or shared variance and 

covariance (equalvarcov) between stocks. For the statewide model we also tested error structures 

with either shared variances and covariances by region, or shared variances but not covariances 

by region. Using the 1976-2005 brood years for our statewide and SCA analyses and the 1981-

2005 brood years for our WAK and SEA analyses ensured that in any given year the model 

included data for at least three populations. However, we were able to include all datasets in the 

analysis, because the modeling approach smoothly handles missing data.  

We used standard model selection based on the AICc to identify the explanatory model 

that contained the lowest number of common trends without suffering from much information 

loss, included the most relevant explanatory variables, and used the most parsimonious form of 

the variance-covariance matrix. The model with the lowest AICc value was selected as the best 

model, and models with a ∆AICc of less than 2 were considered competitive models with similar 

support (Burnham and Anderson 2002). We subsequently performed a retrospective analysis to 

evaluate the ability of the selected model to accurately forecast Chinook salmon population 
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productivity in each of the three regions. To accomplish this, we computed one-step-ahead 

forecasts from the DFA model and used the predictions for each year to calculate an overall 

forecast error, which was defined as the square root of the mean squared prediction error 

(RMSE). Using this metric of predictive ability, we compared the selected models including 

covariates, i.e. the model with the greatest support according to the AICc model selection, to (1) 

trend-only DFA models without covariates, (2) models that in any given year use the previous 

observation as predicted value, and (3) models that produce predictions by randomly drawing 

from a normal distribution with a mean and variance derived from the respective time series.  

RESULTS 

The statewide model with the greatest data support estimated two common trends in recruitment 

dynamics among the 15 Chinook populations (Fig. 2). The first trend was characterized by a 

period of above-average productivity around 1981-1992 and a moderate decline towards the end 

of the time series. A steep drop in productivity during the early 2000s dominated the second 

trend. Overall these trends combined to produce particularly low productivity during the most 

recent decade. The population loadings on these trends tended to be clustered by region: WAK 

populations showed mostly positive loadings on the first trend and SCA populations showed 

strong positive loadings on the second trend, while SEA populations were associated with both 

trends. The best model included the winter NPGO as a global environmental indicator of 

Chinook salmon productivity across Alaska that explained additional variation beyond the two 

trends described above. The NPGO in year 2, i.e. two years after the brood year, showed mostly 

positive and some negative associations with population productivity, and the effect was 

significant for some of the stocks (Fig. 3). In particular, Chinook salmon returning to the 

Kuskokwim, Yukon, Anchor, Stikine and Taku rivers were all positively correlated with the 
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NPGO. The best model included an error structure of variances and covariances that were 

identical within regions but different between regions. The second and third most parsimonious 

model included three common trends. However, all alternative models tested in the statewide 

analysis had a ∆AICc>2 (Appendix, Table A1). 

The regional models with the greatest data support had only a single common trend 

within each region (Fig. 4). Populations consistently showed positive loadings on the detected 

trends, suggesting that population productivity followed similar temporal dynamics within 

regions. In line with the statewide model, these models suggest declining productivity towards 

the end of the time series, beginning with the 2000 brood year, approximately. Both the shared 

trends and selected indicators differed by region, suggesting less coherent dynamics among 

regions (Figs. 4 and 5).  

Higher productivity in WAK populations was associated with earlier ice break-up in 

year 2, lower Russian Chinook catches in year 3, and a positive winter NPGO index in year 2. 

The SCA model included BSAI Chinook bycatch and BOG pollock biomass in year 2, and 

Russian Chinook catches in year 3, however, these indicators showed inconsistent associations 

with Chinook population productivity in the SCA region.  

Higher productivity of SEA populations was weakly associated with increased Russian 

Chinook catches in year 3, and showed weak associations to the timing of ice break-up in year 1. 

In the case of WAK and SEA several alternative models had a ∆AICc<2, suggesting that other 

indicators such as the PDO are linked to population productivity in these regions (Appendix, 

Tables A2-A4). The observation error structure indicated that populations share the same 

variance by region and that models with or without a uniform covariance structure perform 
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similarly well. Overall, model fits captured both the long-term trends and interannual variability 

of the data (Fig. 6, see also Fig. A1). 

Using a different regional clustering with the Nelson River population as part of a larger 

Western Alaska region produced slightly different results. This alternative DFA selected the 

same covariates for the most parsimonious WAK models, but instead estimated two shared 

trends, which suggested less coherent dynamics among WAK populations when Nelson was 

included in the region. The SCA model without Nelson estimated one shared trend and selected 

similar covariates (Appendix, Tables A5-A6).  

Compared to models without covariates, the selected regional models had higher 

predictive power when performing one-year ahead forecasts of population productivity. The 

covariate models had the lowest forecast errors, followed by trend-only models without 

covariates and models that used the previous observation as predicted value (Fig. 7). However, 

the relative performance of the different models varied by population and region. As expected, 

models using the previous observation as predicted value produced weak forecasts in populations 

with volatile productivity dynamics, but performed reasonably well in populations characterized 

by strong autocorrelation in the time series. Including covariates into the regional models 

reduced population-specific forecast errors by an average of 19% across all 15 populations. The 

strongest effect was found for Western Alaska populations with an average reduction in forecast 

error of 29% across populations. 

DISCUSSION 

We found strong support for temporal synchrony in Chinook salmon productivity dynamics 

within regions and some support for synchronous dynamics at larger spatial scales across Alaska 

(i.e., among regions, Fig. 1). The regional models had only one common trend in each of the 
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three regions (Fig. 4), and populations showed regional clustering in the statewide analysis 

(Fig. 2). The estimated trends demonstrate that productivity of Alaskan Chinook salmon has 

generally declined during the most recent decade, starting around 2000. Our results further 

suggest that the timing of river ice break-up (an indicator of regional spring warming) is a 

potentially important factor determining population productivity in Western Alaska, and that 

productivity dynamics of Chinook salmon across Alaska are linked to the NPGO index. 

However, the results also show that populations within regions do not respond consistently to the 

same environmental drivers, suggesting that environmental effects on recruitment are regulated 

at local scales. Our findings further indicate that broad-scale changes in Chinook salmon 

productivity may be linked to recent regime shifts in the North Pacific Ocean. The climate of the 

North Pacific experienced regime shifts in 1977 and 1989 (Hare and Mantua 2000). The 

statewide model trends show increased productivity to above-average levels shortly after 1977 

and a decline shortly after 1989 (Fig. 2). Declines in productivity in Western Alaskan Chinook 

salmon appeared to be especially linked to the 1989 regime shift (Fig. 4). 

The finding that Chinook salmon productivity dynamics covary at the regional scale is 

consistent with previous studies on other species of Pacific salmon showing that correlations in 

survival indices of pink (O. gorbuscha), chum (O. keta), and sockeye (O. nerka) salmon tend to 

be higher at smaller distances (Mueter et al. 2002, Peterman et al. 1998, Pyper et al. 2001, 

Sharma et al. 2013, Stachura et al. 2014). For instance, Peterman and Dorner (2012) showed that 

productivity of sockeye salmon from Washington to Southeast Alaska has declined markedly 

since the late 1990s, while productivity of central and western Alaskan populations has increased 

or varied only slightly over the same time period, suggesting different productivity dynamics 

between regions. 
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While our analysis identified regional covariability in Chinook salmon productivity, it 

also indicated some degree of variation in the population-specific effects of environmental 

drivers. This is in line with recent studies that have demonstrated intraspecific variation in 

population responses to the same regional climate variables in Pacific salmon (Hilborn et al. 

2003, Schindler et al. 2010, Braun et al. 2015). For instance, Braun et al. (2015) showed that 

ocean environmental conditions (e.g. offshore temperature) had contrasting effects on the 

survival of Chinook salmon populations in the Fraser River (Canada) that differed in life history. 

Population-specific responses may also reflect geographic variation in the relationship between 

broad-scale climate indices and local climate conditions, for instance via differences in habitat 

characteristics (van de Pol et al. 2013).  

The North Pacific Gyre Oscillation (NPGO) was associated with Chinook salmon 

productivity dynamics at large spatial scales (Fig. 3), indicating that the NPGO is more closely 

linked to variability in Chinook salmon dynamics than other broad-scale climate indices. The 

NPGO has previously been linked to the productivity of krill and higher trophic levels in the 

Northeast Pacific (Sydeman et al. 2013). Our results complement a recent study on hatchery-

reared Chinook salmon indicating that the NPGO is an important driver of variability in Chinook 

salmon populations along the West Coast, from California to Southeast Alaska (Kilduff et al. 

2015). Specifically, it was shown that variability in ocean conditions, as reflected by the NPGO, 

acts to synchronize survival rates of Chinook and coho salmon across a broad geographic range.  

At the regional scale, river ice break-up dates had significant effects on Chinook salmon 

productivity. Variability in river ice break-up dates reflects general changes in climate conditions 

and has been linked to larger climate indices such as the PDO (Schindler et al. 2005, Schindler 

and Rogers 2009). Because stream-type Chinook spend one winter in freshwater, conditions such 
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as river ice break-up that affect growth potential may affect survival during subsequent winters. 

Furthermore, ice break-up date may affect ocean survival through changes in the timing of smolt 

migration (Scheuerell et al. 2009, Satterthwaite et al. 2014). Thus, earlier ice break-up may affect 

productivity in Alaskan salmon populations through advanced outmigration of smolts or earlier 

warming of rivers leading to better growth conditions. Chinook populations at high latitudes may 

therefore benefit from changes in freshwater conditions due to a warming climate. In contrast, 

previous studies have suggested that Chinook salmon might be particularly vulnerable to future 

changes in ocean conditions due to climate change (Abdul-Aziz et al. 2011, Sharma et al. 2013). 

Forecast errors were used as a measure of predictive power to evaluate the degree to 

which environmental indicators could improve the models’ ability to produce one-year-ahead 

projections of population productivity, as compared to random walk only and simple 

autoregressive models. Including the selected indicators generally improved the predictive ability 

of the models (Fig. 7). This was particularly evident for populations from Western Alaska. 

Consequently, obtaining information on environmental variables that are known to affect 

Chinook salmon at specific life-stages, for instance the timing of river ice break-up in the year 

that salmon smolts migrate to the ocean, can improve forecasts of population productivity.  

The models presented here do not account for density dependence in the spawner-recruit 

relationship, because we used ln(R/S) time series as our index of population productivity. 

However, we also ran our analyses using the residuals of a Ricker stock-recruitment fit to 

account for density dependence effects. The results obtained using this alternative index of 

population productivity are largely in line with the findings reported for ln(R/S) time series 

(Appendix, Table A7, Figs. A2 and A3). The statewide model had the same number of trends, 

and included the NPGO index with similar estimated effect sizes, though also included the BSAI 
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Chinook bycatch as additional indicator (Fig. A2). The regional models had either one or two 

trends and tended to select similar but fewer indicators in the top models (Table A7, Fig. A3). 

The direction and strength of the covariate effects were mostly consistent (Figs. 5 and A3), e.g. 

the strongest, most significant effects were found for river ice break-up in Western Alaska.  

While the dominant life-history pattern across the study populations can be classified as 

‘stream-type’, i.e. the majority of individuals spend a full year in freshwater habitats, it should be 

noted that the Situk river population in Southeast Alaska exhibits a distinct life-history in that 

most individuals migrate to sea as sub-yearling smolts (McPherson et al. 2003). This may have 

limited our ability to identify important indicators of productivity dynamics in this region, 

because for this population indicators were tested for effects during the second (not first) year of 

marine life. Interestingly, the timing of river ice break-up in the first year was found to be 

significant for this population, which is in line with the expectation that ice break-up in the year 

of outmigration is an important driver of Chinook salmon productivity (Fig. 5). Another potential 

limitation of our approach is that the life-history of the populations may have changed over time. 

Hence, changes in the proportion of the dominant age-class that migrates out to the ocean over 

the time period studied here cannot be ruled out. 

Finally, other environmental drivers that were not included in this study may affect 

growth and survival of Chinook salmon, specifically trophic interactions that could not be 

accounted due to a lack of long-term time series data. For instance, a potentially important factor 

is the prevalence of Ichthyophonus, a parasite that has recently increased in abundance and that 

may affect the spawning success of Alaskan Chinook salmon, such as has been hypothesized for 

the Yukon River population (Kocan et al. 2003).  
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In conclusion, our findings suggest that productivity dynamics of Chinook salmon 

populations strongly covary within regions and to some extend across large spatial scales. The 

estimated temporal trends further suggest that Chinook salmon productivity in Alaskan rivers has 

declined markedly in the early 2000s. Finally, this study illustrates the use of Dynamic Factor 

Analysis for quantifying the spatial and temporal complexity of multiple population responses to 

changes in environmental conditions. This approach formally extracts trends that are common to 

populations but that are not explained by known covariates and therefore will provide insights to 

broad-scale processes that affect population dynamics across large regions. 

ACKNOWLEDGEMENTS  

We thank S. Fleischman and M. Catalano for providing run reconstructions of spawning 

escapement and recruitment for the populations used in this analysis. We also thank K. Myers 

and M. Bradford who provided additional time series data on environmental indicators, and M. 

Stachura for helpful discussions. Input from S. Fleishman, R. Clark, E. Volk, and J. Linderman 

from the Alaska Department of Fish and Game was invaluable to this project. This work was 

funded by the Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative, and we thank J. Spaeder 

for his insights on this effort. 

LITERATURE CITED  

Abdul-Aziz, O. I., N. J. Mantua, K. W. Myers, and M. Bradford. 2011. Potential climate change 

impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific 

Ocean and adjacent seas. Canadian Journal of Fisheries and Aquatic Sciences 68:1660–

1680. 

ADFG 2012. Alaska Chinook salmon knowledge gaps and needs. Alaska Department of Fish 

and Game. Anchorage, AK. 



 19

ADFG Chinook Salmon Research Team. 2013. Chinook salmon stock assessment and research 

plan, 2013. Alaska Department of Fish and Game, Special Publ. No. 13-01, Anchorage, 

AK. 

Beamish, R. J., and C. Mahnken. 2001. A critical size and period hypothesis to explain natural 

regulation of salmon abundance and the linkage to climate and climate change. Progress 

in Oceanography 49:423–437. 

Bieniek, P. A., U. S. Bhatt, L. A. Rundquist, S. D. Lindsey, X. Zhang, and R. L. Thoman. 2011. 

Large-scale climate controls of interior Alaska river ice breakup. Journal of Climate 

24:286–297. 

Braun, D. C., J. W. Moore, J. Candy, and R. E. Bailey. 2015. Population diversity in salmon: 

linkages among response, genetic and life history diversity. Ecography. [doi 

10.1111/ecog.01102] 

Burke, B. J., W. T. Peterson, B. R. Beckman, C. Morgan, E. A. Daly, and M. Litz. 2013. 

Multivariate Models of Adult Pacific Salmon Returns. PLoS ONE 8:e54134. 

Crozier, L. G., R. W. Zabel, E. E. Hockersmith, and S. Achord. 2010. Interacting effects of 

density and temperature on body size in multiple populations of Chinook salmon. 

Journal of Animal Ecology 79:342–349. 

Davis, N. D., K. W. Myers, and W. J. Fournier. 2009. Winter food habits of Chinook salmon in 

the eastern Bering Sea. North Pacific Anadromous Fish Commission Technical Report 

5:243–253. 

Di Lorenzo, E., N. et al. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem 

change. Geophysical Research Letters 35:L08607. 



 20

Fleischman, S. J., M. J. Catalano, R. A. Clark, D. R. Bernard, and Y. Chen. 2013. An age-

structured state-space stock–recruit model for Pacific salmon (Oncorhynchus spp.). 

Canadian Journal of Fisheries and Aquatic Sciences 70:401–414. 

Fleischman, S. J., Der Hovanisian, J. A., and McPherson, S. A. 2011. Escapement goals for 

Chinook salmon in the Blossom and Keta Rivers. Fishery Manuscript No. 11-05. Alaska 

Department of Fish and Game, Anchorage, AK. 

Gilbert, C. H. 1912. Age at maturity of Pacific Coast salmon of the Genus Oncorhynchus. 

Bulletin of the United States Bureau of Fisheries 32:1–22. 

Hare, S. R., and N. J. Mantua. 2000. Empirical evidence for North Pacific regime shifts in 1977 

and 1989. Progress in Oceanography 47:103–145. 

Hartman, W. L., W. R. Heard, and B. Drucker. 1967. Migratory behavior of sockeye salmon fry 

and smolts. Journal of the Fisheries Research Board of Canada 24:2069–2099. 

Harvey, A.C. 1989. Forecasting, structural time series models and the Kalman filter. Cambridge 

University Press, Cambridge. 

Heard, W. R., E. Shevlyakov, O. V. Zikunova, and R. E. McNicol. 2007. Chinook salmon – 

trends in abundance and biological characteristics. North Pacific Anadromous Fish 

Commission Bulletin 4:77–91. 

Hilborn, R., T. P. Quinn, D. E. Schindler, and D. E. Rogers. 2003. Biocomplexity and fisheries 

sustainability. Proceedings of the National Academy of Sciences of the United States of 

America 100:6564–6568. 

Holmes, E. E., E. J. Ward, and K. Wills. 2012. MARSS: Multivariate autoregressive state-space 

models for analyzing time-series data. The R Journal 4:11–19. 



 21

Jenni, L., and M. Kery. 2003. Timing of autumn bird migration under climate change: advances 

in long-distance migrants, delays in short-distance migrants. Proceedings of the Royal 

Society B: Biological Sciences 270:1467–1471. 

Jensen, O. P., B. J. Benson, J. J. Magnuson, V. M. Card, M. N. Futter, P. A. Soranno, and K. M. 

Stewart. 2007. Spatial analysis of ice phenology trends across the Laurentian Great 

Lakes region during a recent warming period. Limnology and Oceanography 52:2013–

2026. 

JTC (The United States and Canada Yukon River Joint Technical Committee). 2013. Yukon 

River salmon 2012 season summary and 2013 season outlook. Alaska Department of 

Fish and Game, Division of Commercial Fisheries, Reg. Info. Rep. 3A13-01. 

Anchorage, AK. 

Kilduff, D. P., E. Di Lorenzo, L. W. Botsford, and S. L. H. Teo. 2015. Changing central Pacific 

El Niños reduce stability of North American salmon survival rates. Proceedings of the 

National Academy of Sciences of the United States of America:201503190–5. 

Kocan, R., P. Hershberger and J. Winton. 2003. Effects of Ichthyophonus on Survival and 

Reproductive Success of Yukon River Chinook Salmon. Federal Subsistence Fishery 

Monitoring Program, Final Project Report No. FIS 01-200. U. S. Fish and Wildlife 

Service, Office of Subsistence Management, Fishery Information Services Division, 

Anchorage, Alaska. 

Levin, S. 1992. The problem of pattern and scale in ecology. Ecology 73:1943–1967. 

McPherson, S., D. Bernard, J. H. Clark, K. Pahlke, E. Jones, J. Der Hovanisian, J. Weller, and R. 

Ericksen. 2003. Stock status and escapement goals for Chinook salmon stocks in 



 22

Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 03-01, 

Anchorage, AK. 

Mantua, N. J., and S. R. Hare. 2002. The Pacific decadal oscillation. Journal of Oceanography 

58:35–44. 

McCullough, D. A. 1999. A review and synthesis of effects of alterations to the water 

temperature regime on freshwater life stages of salmonids, with special reference to 

Chinook salmon. USEPA Report. 

Mueter, F. J., D. M. Ware, and R. M. Peterman. 2002. Spatial correlation patterns in coastal 

environmental variables and survival rates of salmon in the north-east Pacific Ocean. 

Fisheries Oceanography 11:205–218. 

Peterman, R. M., and B. Dorner. 2012. A widespread decrease in productivity of sockeye salmon 

(Oncorhynchus nerka) populations in western North America. Canadian Journal of 

Fisheries and Aquatic Sciences 69:1255–1260. 

Peterman, R. M., B. J. Pyper, M. F. Lapointe, M. D. Adkison, and C. J. Walters. 1998. Patterns 

of covariation in survival rates of British Columbian and Alaskan sockeye salmon 

(Oncorhynchus nerka) stocks. Canadian Journal of Fisheries and Aquatic Sciences 

55:2503–2517. 

Pyper, B. J., F. J. Mueter, R. M. Peterman, D. J. Blackbourn, and C. C. Wood. 2001. Spatial 

covariation in survival rates of Northeast Pacific pink salmon (Oncorhynchus 

gorbuscha). Canadian Journal of Fisheries and Aquatic Sciences 58:1501–1515. 

Quinn, T. P. 2005. The Behavior and Ecology of Pacific Salmon and Trout. University of 

Washington Press, Seattle, WA. 



 23

R Development Core Team. 2014. R: A language and environment for statistical computing. 

Third edition. R Foundation for Statistical Computing, Vienna, Austria. 

Rogers, L. A., and D. E. Schindler. 2011. Scale and the detection of climatic influences on the 

productivity of salmon populations. Global Change Biology 17: 2546–2558. 

Ruggerone, G. T., M. Zimmermann, K. W. Myers, J. L. Nielsen, and D. E. Rogers. 2003. 

Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan 

sockeye salmon (O. nerka) in the North Pacific Ocean. Fisheries Oceanography 12:209–

219. 

Ruggerone, G. T., R. M. Peterman, B. Dorner, and K. W. Myers. 2010. Magnitude and trends in 

abundance of hatchery and wild pink salmon, chum salmon, and sockeye salmon in the 

North Pacific Ocean. Marine and Coastal Fisheries 2:306–328. 

Runge, C. A., T. G. Martin, H. P. Possingham, S. G. Willis, and R. A. Fuller. 2014. Conserving 

mobile species. Frontiers in Ecology and the Environment 12:395–402. 

Scheuerell, M. D., R. W. Zabel, and B. P. Sandford. 2009. Relating juvenile migration timing 

and survival to adulthood in two species of threatened Pacific salmon (Oncorhynchus 

spp.). Journal of Applied Ecology 46:983–990. 

Schindler, D. E., and L. A. Rogers. 2009. Responses of Pacific salmon populations to climate 

variation in freshwater ecosystems. Pages 1127–1142 in C. C. Krueger and C. E. 

Zimmerman, editors. Pacific Salmon - Ecology and Management of Western Alaska's 

Populations. American Fisheries Society. Bethesda, MA. 

Schindler, D. E., et al. 2013. Arctic-Yukon-Kuskokwim Chinook salmon research action plan. 

AYK Sustainable Salmon Initiative. Anchorage, AK. 



 24

Schindler, D. E., D. E. Rogers, M. D. Scheuerell, and C. A. Abrey. 2005. Effects of changing 

climate on zooplankton and juvenile sockeye salmon growth in southwestern Alaska. 

Ecology 86:198–209. 

Schindler, D. E., R. Hilborn, B. Chasco, C. P. Boatright, T. P. Quinn, L. A. Rogers, and M. S. 

Webster. 2010. Population diversity and the portfolio effect in an exploited species. 

Nature 465:609–613. 

Sharma, R., L. A. Vélez-Espino, A. C. Wertheimer, N. Mantua, and R. C. Francis. 2013. 

Relating spatial and temporal scales of climate and ocean variability to survival of 

Pacific Northwest Chinook salmon (Oncorhynchus tshawytscha). Fisheries 

Oceanography 22:14–31. 

Stachura, M. M., N. J. Mantua, and M. D. Scheuerell. 2014. Oceanographic influences on 

patterns in North Pacific salmon abundance. Canadian Journal of Fisheries and Aquatic 

Sciences 71:226–235. 

Stram, D. L., and J. N. Ianelli. 2014. Evaluating the efficacy of salmon bycatch measures using 

fishery-dependent data. ICES Journal of Marine Science:1–8. 

Sydeman, W. J., J. A. Santora, S. A. Thompson, B. Marinovic, and E. D. Lorenzo. 2013. 

Increasing variance in North Pacific climate relates to unprecedented ecosystem 

variability off California. Global Change Biology 19:1662–1675. 

van de Pol, M., et al. 2013. Problems with using large-scale oceanic climate indices to compare 

climatic sensitivities across populations and species. Ecography 36:249–255. 

Wells, B. K., C. B. Grimes, J. G. Sneva, S. McPherson, and J. B. Waldvogel. 2008. Relationships 

between oceanic conditions and growth of Chinook salmon (Oncorhynchus 



 25

tshawytscha) from California, Washington, and Alaska, USA. Fisheries Oceanography 

17:101–125. 

Zuur, A. F., I. D. Tuck, and N. Bailey. 2003a. Dynamic factor analysis to estimate common 

trends in fisheries time series. Canadian Journal of Fisheries and Aquatic Sciences 

60:542–552. 

Zuur, A. F., R. J. Fryer, I. T. Jolliffe, R. Dekker, and J. J. Beukema. 2003b. Estimating common 

trends in multivariate time series using dynamic factor analysis. Environmetrics 

14:665–685.   



 26

Table 1. Chinook salmon escapement and recruitment time series used in the DFA. Given 

are years for which data were included and the average recruitment and escapement across years.  

Stock Years Average 
recruitment 

Average 
escapement

Chena & Salcha 1986-2005 30311 17226 

Goodnews 1981-2005 9297 6357 

Kuskokwim 1976-2005 248083 160585 

Nushagak 1976-2005 224748 146074 

Unalakleet 1985-2005 8919 3455 

Yukon (Canadian) 1982-2005 122431 52085 

Anchor 1977-2005 10988 10081 

Ayakulik 1976-2005 13024 10691 

Deshka 1979-2005 29534 25024 

Karluk 1976-2005 9704 8789 

Nelson 1976-2005 8176 4758 

Alsek 1976-2003 8873 9115 

Situk 1982-2005 3591 1522 

Stikine 1981-2005 44499 32525 

Taku 1976-2005 58096 48510 
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Table 2. Environmental indicators used in the DFA. Indicators were hypothesized to affect 

Chinook salmon at specific ages, and were lagged by the appropriate year, relative to brood year.  

  Year  

Indicator Acronym 1 2 3 4 5 Source 

Air temperature on land TEMP X X    1,2 

Ice-out dates ICE X X    3 

Sea level pressure SLP  X    2 

Sea-surface temperature SST  X    2 

Strong winds index SWI  X    2 

Arctic Oscillation AO  X    2 

Pacific Decadal Oscillation PDO  X    2 

North Pacific Index  NPI  X    2 

North Pacific Gyre Oscillation NPGO  X    4 

Bogoslof region pollock biomass BOG  X    5 

Russian Chinook catch RUS   X X X 5 

Kamchatka pink abundance KAM   X   6 

BSAI Chinook bycatch BSAI  X X X  6 

Sources are: 1, M. Bradford, personal communication; 2, Bering Climate, NOAA 

(http://www.beringclimate.noaa.gov); 3, Alaska-Pacific River Forecast Center, NOAA 

(http://aprfc.arh.noaa.gov); 4, Emanuele Di Lorenzo (http://www.o3d.org/npgo); 5, Kate Myers, 

University of Washington, pers. comm.; 6, North Pacific Anadromous Fish Commission 

(http://www.npafc.org).  
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FIGURE CAPTIONS 

Fig. 1: Map of Alaska with Chinook salmon productivity time series by region. Chinook 

salmon populations were clustered according to their ocean entry locations into the following 

three regions: Western Alaska (WAK), Southcentral Alaska (SCA), and Southeast Alaska (SEA). 

Productivity time series were demeaned and standardized. 

Fig. 2: Trends and loadings of the statewide model. Shown are common trends and 

population-specific loadings on these trends for the statewide model that included all 15 Chinook 

populations. 

Fig. 3: Covariate effects of the statewide model. Shown are maximum likelihood estimates and 

95% confidence intervals for the NPGO effect, which was the only indicator that was included 

into the most parsimonious model. CIs were calculated based on the hessian approach by re-

fitting the DFA using the maximum likelihood estimates produced by the original model that 

allowed for an error structure of different variances and covariances by region. 

Fig. 4: Trends and loadings of the regional models. Shown are common trends and 

population-specific loadings on these trends for each of the regions: WAK (top/blue), SCA 

(center/green), and SEA (bottom/purple). 

Fig. 5: Covariate effects of the regional DFA models. Shown are maximum likelihood 

estimates and 95% confidence intervals for covariates included into the most parsimonious 

model for each region: WAK (left/blue), SCA (center/green), SEA (right/purple). The WAK and 

SCA models included three indicators, and the SEA model included two indicators (ICE: river 
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ice break-up, NPGO: North Pacific Gyre Oscillation, RUS: Russian Chinook catches, BSAI: 

Bering Sea and Aleutian Islands Chinook bycatch, BOG: Bogoslof region pollock biomass). 

Fig. 6: Fits of the regional DFA models. Shown are model fits to productivity time series of all 

Chinook populations by region: WAK (left/blue), SCA (center/green), and SEA (right/purple).  

Fig. 7: Comparison of model predictive ability. Shown are forecast errors for each population 

of the selected regional models including covariates (covar) in comparison with trend-only 

models (trend), models that in each year use the previous observation as predicted value (prev), 

and models that produce predictions by randomly drawing from a normal distribution with a 

mean and variance derived from the respective time series (rand). Circles and lines for the 

random forecast model represent median values and 95% confidence intervals based on 10,000 

bootstraps. The selected covariate models tended to have the lowest forecast errors (square root 

of the mean squared prediction error) and thus the best predictive power. 

















I. MODEL SELECTION RESULTS 

List of abbreviations for indicators used in the models: 

TEMP - Air temperature on land 

ICE – River ice break-up  

SLP - Sea level pressure    

SST - Sea-surface temperature    

SWI - Strong winds index    

AO - Arctic Oscillation    

PDO - Pacific Decadal Oscillation    

NPI - North Pacific Index     

NPGO - North Pacific Gyre Oscillation   

BOG - Walleye pollock biomass from the Bogoslof region in the Eastern Bering Sea   

BSAI – Bering Sea and Aleutian Islands Chinook bycatch    

KAM - Kamchatka pink abundance    

RUS - Russian Chinook catch 

Numbers after the indicators in the following tables refer to the time lag in years relative to the 

brood year (e.g. ICE.2 refers to the timing of river ice break-up in the second spring), and lower 

case letters indicate the season (a-annual, w-winter, s-spring).  
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Table A1: Model selection results for the Alaska-wide model (AK). Given are the covariates, 

number of shared trends, ∆AICc values, and Akaike weights for the top 20 models. 

Indicator 1 Indicator 2 Indicator 3 Trends ∆AICc Akaike weights 

NPGO.w2 NA NA 2 0 0.514 

ICE.2 NA NA 3 2.8 0.129 

RUS.3 NA NA 3 3.6 0.085 

ICE.2 RUS.3 NA 2 4.5 0.055 

RUS.3 NA NA 2 4.9 0.044 

ICE.2 RUS.3 NA 3 5.4 0.035 

NA NA NA 3 5.7 0.029 

ICE.2 BSAI.2 NA 3 5.8 0.028 

NPGO.w2 ICE.2 NA 2 6 0.025 

NPGO.a2 NA NA 2 7.6 0.011 

ICE.2 NA NA 2 8 0.01 

NPGO.s2 BSAI.2 NA 2 9.3 0.005 

NPGO.w2 BSAI.2 NA 2 9.6 0.004 

NPGO.w2 NA NA 3 10.5 0.003 

NPGO.a2 BSAI.2 NA 2 10.7 0.002 

NPGO.a2 NA NA 3 11 0.002 

NPGO.w2 RUS.3 NA 3 11.1 0.002 

NPGO.s2 NA NA 2 11.1 0.002 

NPGO.s2 NA NA 3 11.7 0.001 

NPGO.w2 RUS.3 NA 2 12.2 0.001 
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Table A2: Model selection results for Western Alaska (WAK). Given are the covariates, 

number of shared trends, ∆AICc values, and Akaike weights for the top 20 models. 

Indicator 1 Indicator 2 Indicator 3 Trends ∆AICc Akaike weights 

ICE.2 RUS.3 NPGO.w2 1 0 0.243 

ICE.2 RUS.3 NA 1 0.71 0.171 

PDO.w2 ICE.2 RUS.3 1 1.21 0.133 

ICE.2 RUS.3 BSAI.2 1 1.59 0.11 

ICE.2 RUS.4 NA 1 1.95 0.092 

ICE.2 RUS.3 BSAI.4 1 2.23 0.08 

ICE.2 RUS.4 BSAI.4 1 5.08 0.019 

ICE.2 RUS.3 NPGO.a2 1 5.5 0.016 

ICE.2 RUS.4 NPGO.w2 1 6.34 0.01 

ICE.2 RUS.5 NPGO.w2 1 6.49 0.009 

SST.w2 ICE.2 RUS.4 1 6.58 0.009 

ICE.2 RUS.3 NPGO.s2 1 6.87 0.008 

PDO.w2 ICE.2 RUS.4 1 6.89 0.008 

ICE.2 RUS.4 BSAI.2 1 6.91 0.008 

SST.w2 ICE.2 RUS.3 1 6.98 0.007 

SST.s2 ICE.2 RUS.4 1 7.25 0.006 

SST.s2 ICE.2 RUS.3 1 7.27 0.006 

ICE.2 RUS.4 NPGO.a2 1 8.65 0.003 

ICE.2 RUS.4 NPGO.s2 1 8.91 0.003 

PDO.a2 ICE.2 RUS.3 1 9.42 0.002 
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Table A3: Model selection results for Southcentral Alaska (SCA). Given are the covariates, 

number of shared trends, ∆AICc values, and Akaike weights for the top 20 models.  

Indicator 1 Indicator 2 Indicator 3 Trends ∆AICc Akaike weights 

RUS.3 BSAI.2 BOG.2 1 0 0.577 

RUS.5 BSAI.2 BOG.2 1 4.8 0.053 

RUS.3 BSAI.2 NA 2 5.2 0.042 

RUS.4 BSAI.2 BOG.2 1 6.1 0.028 

BSAI.2 BOG.2 NA 2 6.3 0.025 

RUS.3 BOG.2 NA 2 7.6 0.013 

RUS.3 BSAI.2 NA 1 7.7 0.012 

RUS.4 BSAI.2 NA 1 7.8 0.012 

RUS.3 BSAI.3 BOG.2 2 8.4 0.009 

BSAI.3 BOG.2 NA 3 8.5 0.008 

RUS.3 BSAI.2 BOG.2 2 8.6 0.008 

BSAI.2 BOG.2 NA 1 8.7 0.008 

RUS.5 BSAI.2 BOG.2 2 8.8 0.007 

RUS.3 NA NA 3 9 0.007 

RUS.3 BSAI.2 NPGO.s2 2 9.2 0.006 

BOG.2 NA NA 3 9.6 0.005 

RUS.4 BSAI.2 NA 2 10.1 0.004 

BSAI.2 BOG.2 NPGO.s2 2 10.3 0.003 

SST.w2 RUS.3 BOG.2 2 10.4 0.003 

RUS.3 BSAI.2 NA 3 10.6 0.003 
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Table A4: Model selection results for Southeast Alaska (SEA). Given are the covariates, 

number of shared trends, ∆AICc values, and Akaike weights for the top 20 models. 

Indicator 1 Indicator 2 Indicator 3 Trends ∆AICc Akaike weights 

RUS.3 ICE.1 NA 1 0 0.377 

RUS.3 BSAI.2 ICE.1 1 0.41 0.307 

RUS.3 NPGO.a2 ICE.1 1 3.69 0.06 

RUS.3 NA NA 2 4.23 0.045 

PDO.a2 RUS.3 ICE.1 1 4.97 0.031 

RUS.3 NPGO.w2 ICE.1 1 5.33 0.026 

RUS.4 BSAI.2 ICE.1 1 6.2 0.017 

RUS.3 NA NA 1 6.52 0.014 

RUS.3 BSAI.2 NA 2 6.84 0.012 

RUS.5 BSAI.2 ICE.1 1 7.24 0.01 

RUS.3 NPGO.a2 NA 1 7.48 0.009 

RUS.4 ICE.1 NA 1 7.53 0.009 

RUS.5 ICE.1 NA 1 8.18 0.006 

RUS.3 ICE.1 NA 2 8.61 0.005 

RUS.3 ICE.1 TEMP.1 1 8.69 0.005 

PDO.a2 RUS.5 ICE.1 1 8.97 0.004 

RUS.3 SST.s2 ICE.1 1 9.14 0.004 

RUS.3 ICE.1 TEMP.2 1 9.2 0.004 

RUS.3 SST.s2 ICE.1 1 9.42 0.003 

RUS.3 BSAI.2 NA 1 9.63 0.003 
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Table A5: Model selection results for the alternative model of Western Alaska (WAK) 

including the Nelson River population. Given are the covariates, number of shared trends, 

∆AICc values, and Akaike weights for the top 5 models. 

Indicator 1 Indicator 2 Indicator 3 Trends ∆AICc Akaike weights 

ICE.2 RUS.3 NA 2 0 0.274 

ICE.2 RUS.3 NPGO.w2 2 0.29 0.237 

ICE.2 NPGO.w2 NA 2 1.07 0.16 

ICE.2 NA NA 2 3.4 0.05 

PDO.w2 ICE.2 RUS.3 2 3.83 0.04 

 

Table A6: Model selection results for the alternative model of Southcentral Alaska (SCA) 

without the Nelson River population. Given are the covariates, number of shared trends, 

∆AICc values, and Akaike weights for the top 5 models. 

Indicator 1 Indicator 2 Indicator 3 Trends ∆AICc Akaike weights 

RUS.3 BSAI.2 NA 1 0 0.425 

RUS.3 BSAI.2 NA 2 4.1 0.054 

SST.w2 RUS.3 BSAI.2 1 4.3 0.05 

RUS.3 NA NA 2 4.3 0.05 

RUS.3 BSAI.2 NPGO.a2 1 4.5 0.044 
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II. MODEL PREDICTED VERSUS OBSERVED  

 

Fig. A1: Plot of predicted versus observed values of ln(R/S). Model predictions derive from the 

regional models as presented in figs 4-6.   
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III. MODELS ACCOUNTING FOR DENSITY DEPENDENCE 

Table A7: Comparison of indicators and trends (m) included in the top models for the statewide 

(AK) and regional analyses (WAK/SCA/SEA) using either the natural logarithm of recruits per 

spawner or the residuals of the Ricker fit. Alternative models presented in Figs A2 and A3 are 

indicated in bold (note that, where possible, models with the same number of indicators were 

selected if the ∆AICc was smaller than 2, i.e. if there was no clear support for any one model). 

 ln(R/S) Residuals of Ricker fit 

 1
st
 model m 1

st
 model m ∆AICc 2

nd
 model m 

AK NPGO.a2 2 
NPGO.a2 

BSAI.4 
2 0.9 

NPGO.w2 

BSAI.4 
2 

WAK 

ICE.2 

RUS.3 

NPGO.w2 

1 

ICE.2, 

RUS.3, 

TEMP.2 

1 1.2 
ICE.2 

TEMP.2 
1 

 SCA 

RUS.3 

BSAI.2 

BOG.2 

1 
BSAI.4, 

NPGO.a2 
2 0.75 

RUS.3 

BSAI.4 

BOG.2 

2 

SEA 
RUS.3 

ICE.1 
1 RUS.3 2 0.96 

RUS.3 

SST.s2 
2 
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Fig. A2: Covariate effects of the alterative statewide model as presented in Table A7. Shown 

are maximum likelihood estimates and 95% confidence intervals for covariates included into the 

best model, as indicated in Table A7.  
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Fig. A3: Covariate effects of the alterative regional models as presented in Table A7. Shown 

are maximum likelihood estimates and 95% confidence intervals for covariates included into the 

best or second best (∆AICc<2) model for each region, as indicated in Table A7 (note that models 

with the same number of covariates were selected if the ∆AICc was smaller than 2). 
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